Skip to main content
Log in

Synthesis and characterization of water-soluble carbon nanotubes from mustard soot

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNT) has been synthesized by pyrolysing mustard oil using an oil lamp. It was made water-soluble (wsCNT) through oxidative treatment by dilute nitric acid and was characterized by SEM, AFM, XRD, Raman and FTIR spectroscopy. The synthesized wsCNT showed the presence of several junctions and defects in it. The presence of curved graphene structure (sp2) with frequent sp3 hybridized carbon is found to be responsible for the observed defects. These defects along with the presence of di- and tri-podal junctions showed interesting magnetic properties of carbon radicals formed by spin frustration. This trapped carbon radical showed ESR signal in aqueous solution and was very stable even under drastic treatment by strong oxidizing or reducing agents. Oxidative acid treatment of CNT introduced several carboxylic acid group functionalities in wsCNT along with the nicking of the CNT at different lengths with varied molecular weight. To evaluate molecular weights of these wsCNTs, an innovative method like gel electrophoresis using high molecular weight DNA as marker was introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T W Odom, J L Huang, P Kim and C M Lieber,J. Phys. Chem. B104, 2794 (2000)

    Google Scholar 

  2. R H Baughman, A A Zakhidov and W A de Heer,Science 297, 787 (2002);Acc. Chem. Res.-Special Issue 35, 997 (2002)

    Article  ADS  Google Scholar 

  3. B S Sherigara, W Kutner and F D’Souza,Electroanalysis 15, 753 (2003)

    Article  Google Scholar 

  4. C N R Rao, B C Satishkumar, A Govindaraj and M Nath,Chem. Phys. Chem 2, 78 (2001)

    Google Scholar 

  5. S S Wong, J D Harper, P T Jr. Lansburry and C M Lieber,J. Am. Chem. Soc. 120, 603 (1998)

    Article  Google Scholar 

  6. G Che, B B Lakshmi, E R Fisher and C R Martin,Nature 393, 346 (1998)

    Article  ADS  Google Scholar 

  7. T Rueckes, K Kim, E Loselevich, G Tseng, C L Cheung and C M Lieber,Science 289, 94 (2000)

    Article  ADS  Google Scholar 

  8. A Bachtold, P Hadley, T Nakanishi and C Dekker,Science 294, 1317 (2001)

    Article  ADS  Google Scholar 

  9. M Bockrath, D H Cobden, P L McEuen, N G Chopra, A Zettl, A Thess and R E Smalley,Science 275, 1922 (1997)

    Article  Google Scholar 

  10. H Ago, K Petritsch, M S P Shaffer, A H Windle and R H Friend,Adv. Mater. 11, 1281 (1999)

    Article  Google Scholar 

  11. A Kasumov, R Deblock, M Kociak, B Reulet, H Bouchiat, I Khodos, Y Gorbatov, V Volkov, C Journet and M Burghard,Science 284, 1508 (1999)

    Article  ADS  Google Scholar 

  12. R H Baughman, C Anvar, A Zakhidov, Z Iqbal, J N Barisci, G M Spinks, G C Wallace, A Mazzoldi, D De Rossi, A Rinzler, O Jaschinski, S Roth and M Kertesz,Science 284, 1340 (1999)

    Article  ADS  Google Scholar 

  13. P Poncharal, Z Wang, D Ugarte and W Heer,Science 283, 1513 (1999)

    Article  ADS  Google Scholar 

  14. C Niu, E Sichel, R Hoch, D Moy and H Tennet,Appl. Phys. Lett. 70, 1480 (1997)

    Article  ADS  Google Scholar 

  15. S S Wong, E Joselevich, A T Woolley, C L Cheung, C M Lieber,Nature 394, 52 (1998)

    Article  ADS  Google Scholar 

  16. J Kong, N Franklin, C Zhou, M Chapline, S Peng, K Cho and H Dai,Science 287, 622 (2000)

    Article  ADS  Google Scholar 

  17. A Dillon, K Jones, T Bekkedahl, C Kiang, D Bethune and M Heben,Nature 386, 377 (1997)

    Article  ADS  Google Scholar 

  18. P Calvert,Nature 357, 365 (1992)

    Article  ADS  Google Scholar 

  19. M S P Shaffer and A H Windle,Adv. Mater. 11, 937 (1999)

    Article  Google Scholar 

  20. A Mamedov, N Kotov, M Prato, D Guldi, J Wisksted and A Hirsch,Nat. Mater. 1, 190 (2002)

    Article  ADS  Google Scholar 

  21. J Rouse, P T Lillehe,Nano. Lett. 3, 59 (2003)

    Article  Google Scholar 

  22. P J Britto, K S V Santhanam, A Rubio, J A Alonso and P M Ajayan,Adv. Mater. 11, 154 (1999)

    Article  Google Scholar 

  23. C Downs, J Nugent, P M Ajayan, D J Duquette and K S V Santhanam,Adv. Mater. 11, 1028 (1999)

    Article  Google Scholar 

  24. P M Ajayan and S Iijima,Nature 361, 333 (1993)

    Article  ADS  Google Scholar 

  25. L Ang, T Hor, G Hu, C Tung, S Zhao and J Wang,Chem. Mater 11, 2115 (1999)

    Article  Google Scholar 

  26. S Iijima,Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  27. S Iijima and T Ichihashi,Nature 363, 603 (1993)

    Article  ADS  Google Scholar 

  28. T Guo, P Nikolaev, A Thess, D T Colbert and R E Smalley,Chem. Phys. Lett. 243, 49 (1995)

    Article  Google Scholar 

  29. Y Gogotsia, J A Libera and M Yoshimura,J. Mater. Res. 15, 2591 (2000)

    Article  ADS  Google Scholar 

  30. F Kokai, K Takahashi, M Yudasaka and S IijimaJ. Phys. Chem. B104, 6777 (2000)

    Google Scholar 

  31. W K Maseret al, Chem. Phys. Lett. 292, 587 (1998)

    Article  ADS  Google Scholar 

  32. W Wang, J Y Huang, D Z Wang and Z F Ren,Carbon 43, 1317 (2005)

    Article  Google Scholar 

  33. J Chen, M A Hamon, H Hu, Y Chen, A M Rao, P C Eklund and R C Haddon,Science 282, 95 (1998)

    Article  ADS  Google Scholar 

  34. N V Sidgwick,The chemical elements and their compounds (Clarendon Press, Oxford University Press, London, 1952) vol. I, p. 488

    Google Scholar 

  35. S C Tsang, Y K Chen, P J F Harris and M L H GreenNature 372, 159 (1994)

    Article  ADS  Google Scholar 

  36. J Liuet al, Science 280, 1253 (1998)

    ADS  Google Scholar 

  37. A G Rinzleret al, Appl. Phys. A67, 29 (1998)

    Article  ADS  Google Scholar 

  38. L Liu, S Zhang, T Hu, T Guo, C Ye, L Dai and D Zhu,Chem. Phys. Lett. 359, 191 (2002)

    Article  ADS  Google Scholar 

  39. C N R Rao, A Govindaraj and B C Satishkumar,Chem. Commun. 1525 (1996)

  40. P Griess,Ber. Dtsch. Chem. Ges. 12, 427 (1879) as cited in Fiegl’s spot tests in inorganic analysis (Elsevier, Amsterdam, 1958) p. 330

    Google Scholar 

  41. P K Hansma, J P Cleveland, M Radmacher, D A Walters, P E Hillner, M Bezanilla, M Fritz, D Vie, H G Hansma, C B Prater, J Massie, L Fukunaga, J Gurley and V Elings,Appl. Phys. Lett. 64, 1738 (1994)

    Article  ADS  Google Scholar 

  42. W Han, S M Lindsay and T Jing,Appl. Phys. Lett. 69, 4111 (1996)

    Article  ADS  Google Scholar 

  43. J Kastner, T Pichler, H Kuzmany, S Curran, W Blau, D N Weldon, M Delamesiere, S Draper and H Zandbergen,Chem. Phys. Lett. 21, 53 (1994)

    Article  ADS  Google Scholar 

  44. W S Bacsa, D Ugarte, A Châtelain and W A de Heer,Phys. Rev. B50, 15473 (1994)

    ADS  Google Scholar 

  45. K Tanaka, T Yamabe and K Fukui,The science and technology of carbon nanotubes (Elsevier, Amsterdam, Lausanne, New York, Oxford, Shannon, Singapore, Tokyo, 1999)

    Google Scholar 

  46. N I Kovtyukhova, T E Mallouk, L Pan and E C Dickey,J. Am. Chem. Soc. 125, 9761 (2003)

    Article  Google Scholar 

  47. K H An, K K Jeon, J M Moon, S J Eum, C W Yang, G S Park, C Y Park and Y H Lee,Synthetic Metals 1, 10379 (2003)

    Google Scholar 

  48. S L Fang, A M Rao, P C Eklund, P Nikolaev, A G Rinzler and R E Smalley,J. Mater. Res. 13, 2405 (1998)

    Article  ADS  Google Scholar 

  49. K Nakamoto,Infrared and Raman spectra of inorganic and coordination compounds 4th edition (John Wiley & Sons, New York, 1986)

    Google Scholar 

  50. Y P Sun, B Zhou, K Henbest, K Fu, W Huang, Y Lin, S Taylor and D L Carroll,Chem. Phys. Lett. 351, 349 (2002)

    Article  ADS  Google Scholar 

  51. N Park, M Yoon, S Berber, J Ihm, E Osawa and D Tom’anek,Phys. Rev. Lett. 91, 237204 (2003)

    Article  ADS  Google Scholar 

  52. B Narymbetovet al, Nature 407, 883 (2000)

    Article  ADS  Google Scholar 

  53. P M Allemandet al, Science 253, 301 (1991)

    Article  ADS  Google Scholar 

  54. A Mrzelet al, Chem. Phys. Lett. 298, 329 (1998)

    Article  ADS  Google Scholar 

  55. T L Makarovaet al, Nature 413, 716 (2001)

    Article  ADS  Google Scholar 

  56. R E Smalleyet al, Science 265, 84 (1994)

    Article  ADS  Google Scholar 

  57. A A Ovchinnikov and I L Shamovsky,J. Mol. Struct. (Theochem.) 83, 133 (1991)

    Article  Google Scholar 

  58. Yong-Hyun Kimet al, Phys. Rev. B68, 125420 (2003)

    ADS  Google Scholar 

  59. S K Doorn, R E Fields, H Hu, M A Hamon, R C Haddon, J P Selegue and V Majidi,J. Am. Chem. Soc. 124, 3169 (2002)

    Article  Google Scholar 

  60. D A Heller, R M Mayrhofer, S Baik, Y V Grinkova, M L Usrey and M S Strano,J. Am. Chem. Soc. 126, 14567 (2004)

    Article  Google Scholar 

  61. M Zheng, A Jagota, E D Semke, B A Diner, R S Mclean, S R Lustig, R E Richardson and N G Tassi,Nat. Mater. 2, 338 (2003)

    Article  ADS  Google Scholar 

  62. M Zheng, A Jagota, M S Strano, A P Santos, P Barone, S G Chou, B A Diner, M S Dresselhaus, R S McLean, G B Onoa, G G Samsonidze, E D Semke, M Usrey and D J Walls,Science 302, 1545 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubey, P., Muthukumaran, D., Dash, S. et al. Synthesis and characterization of water-soluble carbon nanotubes from mustard soot. Pramana - J. Phys. 65, 681–697 (2005). https://doi.org/10.1007/BF03010456

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03010456

Keywords

PACS No

Navigation