, Volume 65, Issue 4, pp 681–697 | Cite as

Synthesis and characterization of water-soluble carbon nanotubes from mustard soot

  • Prashant Dubey
  • Devarajan Muthukumaran
  • Subhashis Dash
  • Rupa Mukhopadhyay
  • Sabyasachi Sarkar


Carbon nanotubes (CNT) has been synthesized by pyrolysing mustard oil using an oil lamp. It was made water-soluble (wsCNT) through oxidative treatment by dilute nitric acid and was characterized by SEM, AFM, XRD, Raman and FTIR spectroscopy. The synthesized wsCNT showed the presence of several junctions and defects in it. The presence of curved graphene structure (sp2) with frequent sp3 hybridized carbon is found to be responsible for the observed defects. These defects along with the presence of di- and tri-podal junctions showed interesting magnetic properties of carbon radicals formed by spin frustration. This trapped carbon radical showed ESR signal in aqueous solution and was very stable even under drastic treatment by strong oxidizing or reducing agents. Oxidative acid treatment of CNT introduced several carboxylic acid group functionalities in wsCNT along with the nicking of the CNT at different lengths with varied molecular weight. To evaluate molecular weights of these wsCNTs, an innovative method like gel electrophoresis using high molecular weight DNA as marker was introduced.


Water-soluble carbon nanotubes mustard soot functionalization with hydrophilic groups multipodal junctions gel electrophoresis molecular weight of wsCNT 




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T W Odom, J L Huang, P Kim and C M Lieber,J. Phys. Chem. B104, 2794 (2000)Google Scholar
  2. [2]
    R H Baughman, A A Zakhidov and W A de Heer,Science 297, 787 (2002);Acc. Chem. Res.-Special Issue 35, 997 (2002)CrossRefADSGoogle Scholar
  3. [3]
    B S Sherigara, W Kutner and F D’Souza,Electroanalysis 15, 753 (2003)CrossRefGoogle Scholar
  4. [3]
    C N R Rao, B C Satishkumar, A Govindaraj and M Nath,Chem. Phys. Chem 2, 78 (2001)Google Scholar
  5. [4]
    S S Wong, J D Harper, P T Jr. Lansburry and C M Lieber,J. Am. Chem. Soc. 120, 603 (1998)CrossRefGoogle Scholar
  6. [5]
    G Che, B B Lakshmi, E R Fisher and C R Martin,Nature 393, 346 (1998)CrossRefADSGoogle Scholar
  7. [6]
    T Rueckes, K Kim, E Loselevich, G Tseng, C L Cheung and C M Lieber,Science 289, 94 (2000)CrossRefADSGoogle Scholar
  8. [6]
    A Bachtold, P Hadley, T Nakanishi and C Dekker,Science 294, 1317 (2001)CrossRefADSGoogle Scholar
  9. [6]
    M Bockrath, D H Cobden, P L McEuen, N G Chopra, A Zettl, A Thess and R E Smalley,Science 275, 1922 (1997)CrossRefGoogle Scholar
  10. [7]
    H Ago, K Petritsch, M S P Shaffer, A H Windle and R H Friend,Adv. Mater. 11, 1281 (1999)CrossRefGoogle Scholar
  11. [8]
    A Kasumov, R Deblock, M Kociak, B Reulet, H Bouchiat, I Khodos, Y Gorbatov, V Volkov, C Journet and M Burghard,Science 284, 1508 (1999)CrossRefADSGoogle Scholar
  12. [9]
    R H Baughman, C Anvar, A Zakhidov, Z Iqbal, J N Barisci, G M Spinks, G C Wallace, A Mazzoldi, D De Rossi, A Rinzler, O Jaschinski, S Roth and M Kertesz,Science 284, 1340 (1999)CrossRefADSGoogle Scholar
  13. [10]
    P Poncharal, Z Wang, D Ugarte and W Heer,Science 283, 1513 (1999)CrossRefADSGoogle Scholar
  14. [11]
    C Niu, E Sichel, R Hoch, D Moy and H Tennet,Appl. Phys. Lett. 70, 1480 (1997)CrossRefADSGoogle Scholar
  15. [12]
    S S Wong, E Joselevich, A T Woolley, C L Cheung, C M Lieber,Nature 394, 52 (1998)CrossRefADSGoogle Scholar
  16. [13]
    J Kong, N Franklin, C Zhou, M Chapline, S Peng, K Cho and H Dai,Science 287, 622 (2000)CrossRefADSGoogle Scholar
  17. [14]
    A Dillon, K Jones, T Bekkedahl, C Kiang, D Bethune and M Heben,Nature 386, 377 (1997)CrossRefADSGoogle Scholar
  18. [15]
    P Calvert,Nature 357, 365 (1992)CrossRefADSGoogle Scholar
  19. [15]
    M S P Shaffer and A H Windle,Adv. Mater. 11, 937 (1999)CrossRefGoogle Scholar
  20. [16]
    A Mamedov, N Kotov, M Prato, D Guldi, J Wisksted and A Hirsch,Nat. Mater. 1, 190 (2002)CrossRefADSGoogle Scholar
  21. [16]
    J Rouse, P T Lillehe,Nano. Lett. 3, 59 (2003)CrossRefGoogle Scholar
  22. [17]
    P J Britto, K S V Santhanam, A Rubio, J A Alonso and P M Ajayan,Adv. Mater. 11, 154 (1999)CrossRefGoogle Scholar
  23. [17]
    C Downs, J Nugent, P M Ajayan, D J Duquette and K S V Santhanam,Adv. Mater. 11, 1028 (1999)CrossRefGoogle Scholar
  24. [18]
    P M Ajayan and S Iijima,Nature 361, 333 (1993)CrossRefADSGoogle Scholar
  25. [18]
    L Ang, T Hor, G Hu, C Tung, S Zhao and J Wang,Chem. Mater 11, 2115 (1999)CrossRefGoogle Scholar
  26. [19]
    S Iijima,Nature 354, 56 (1991)CrossRefADSGoogle Scholar
  27. [20]
    S Iijima and T Ichihashi,Nature 363, 603 (1993)CrossRefADSGoogle Scholar
  28. [21]
    T Guo, P Nikolaev, A Thess, D T Colbert and R E Smalley,Chem. Phys. Lett. 243, 49 (1995)CrossRefGoogle Scholar
  29. [22]
    Y Gogotsia, J A Libera and M Yoshimura,J. Mater. Res. 15, 2591 (2000)CrossRefADSGoogle Scholar
  30. [23]
    F Kokai, K Takahashi, M Yudasaka and S IijimaJ. Phys. Chem. B104, 6777 (2000)Google Scholar
  31. [24]
    W K Maseret al, Chem. Phys. Lett. 292, 587 (1998)CrossRefADSGoogle Scholar
  32. [24]
    W Wang, J Y Huang, D Z Wang and Z F Ren,Carbon 43, 1317 (2005)CrossRefGoogle Scholar
  33. [25]
    J Chen, M A Hamon, H Hu, Y Chen, A M Rao, P C Eklund and R C Haddon,Science 282, 95 (1998)CrossRefADSGoogle Scholar
  34. [26]
    N V Sidgwick,The chemical elements and their compounds (Clarendon Press, Oxford University Press, London, 1952) vol. I, p. 488Google Scholar
  35. [27]
    S C Tsang, Y K Chen, P J F Harris and M L H GreenNature 372, 159 (1994)CrossRefADSGoogle Scholar
  36. [28]
    J Liuet al, Science 280, 1253 (1998)ADSGoogle Scholar
  37. [28]
    A G Rinzleret al, Appl. Phys. A67, 29 (1998)CrossRefADSGoogle Scholar
  38. [29]
    L Liu, S Zhang, T Hu, T Guo, C Ye, L Dai and D Zhu,Chem. Phys. Lett. 359, 191 (2002)CrossRefADSGoogle Scholar
  39. [30]
    C N R Rao, A Govindaraj and B C Satishkumar,Chem. Commun. 1525 (1996)Google Scholar
  40. [31]
    P Griess,Ber. Dtsch. Chem. Ges. 12, 427 (1879) as cited in Fiegl’s spot tests in inorganic analysis (Elsevier, Amsterdam, 1958) p. 330Google Scholar
  41. [32]
    P K Hansma, J P Cleveland, M Radmacher, D A Walters, P E Hillner, M Bezanilla, M Fritz, D Vie, H G Hansma, C B Prater, J Massie, L Fukunaga, J Gurley and V Elings,Appl. Phys. Lett. 64, 1738 (1994)CrossRefADSGoogle Scholar
  42. [33]
    W Han, S M Lindsay and T Jing,Appl. Phys. Lett. 69, 4111 (1996)CrossRefADSGoogle Scholar
  43. [34]
    J Kastner, T Pichler, H Kuzmany, S Curran, W Blau, D N Weldon, M Delamesiere, S Draper and H Zandbergen,Chem. Phys. Lett. 21, 53 (1994)CrossRefADSGoogle Scholar
  44. [35]
    W S Bacsa, D Ugarte, A Châtelain and W A de Heer,Phys. Rev. B50, 15473 (1994)ADSGoogle Scholar
  45. [36]
    K Tanaka, T Yamabe and K Fukui,The science and technology of carbon nanotubes (Elsevier, Amsterdam, Lausanne, New York, Oxford, Shannon, Singapore, Tokyo, 1999)Google Scholar
  46. [37]
    N I Kovtyukhova, T E Mallouk, L Pan and E C Dickey,J. Am. Chem. Soc. 125, 9761 (2003)CrossRefGoogle Scholar
  47. [38]
    K H An, K K Jeon, J M Moon, S J Eum, C W Yang, G S Park, C Y Park and Y H Lee,Synthetic Metals 1, 10379 (2003)Google Scholar
  48. [39]
    S L Fang, A M Rao, P C Eklund, P Nikolaev, A G Rinzler and R E Smalley,J. Mater. Res. 13, 2405 (1998)CrossRefADSGoogle Scholar
  49. [40]
    K Nakamoto,Infrared and Raman spectra of inorganic and coordination compounds 4th edition (John Wiley & Sons, New York, 1986)Google Scholar
  50. [41]
    Y P Sun, B Zhou, K Henbest, K Fu, W Huang, Y Lin, S Taylor and D L Carroll,Chem. Phys. Lett. 351, 349 (2002)CrossRefADSGoogle Scholar
  51. [42]
    N Park, M Yoon, S Berber, J Ihm, E Osawa and D Tom’anek,Phys. Rev. Lett. 91, 237204 (2003)CrossRefADSGoogle Scholar
  52. [43]
    B Narymbetovet al, Nature 407, 883 (2000)CrossRefADSGoogle Scholar
  53. [44]
    P M Allemandet al, Science 253, 301 (1991)CrossRefADSGoogle Scholar
  54. [45]
    A Mrzelet al, Chem. Phys. Lett. 298, 329 (1998)CrossRefADSGoogle Scholar
  55. [46]
    T L Makarovaet al, Nature 413, 716 (2001)CrossRefADSGoogle Scholar
  56. [47]
    R E Smalleyet al, Science 265, 84 (1994)CrossRefADSGoogle Scholar
  57. [48a]
    A A Ovchinnikov and I L Shamovsky,J. Mol. Struct. (Theochem.) 83, 133 (1991)CrossRefGoogle Scholar
  58. [48b]
    Yong-Hyun Kimet al, Phys. Rev. B68, 125420 (2003)ADSGoogle Scholar
  59. [49]
    S K Doorn, R E Fields, H Hu, M A Hamon, R C Haddon, J P Selegue and V Majidi,J. Am. Chem. Soc. 124, 3169 (2002)CrossRefGoogle Scholar
  60. [50]
    D A Heller, R M Mayrhofer, S Baik, Y V Grinkova, M L Usrey and M S Strano,J. Am. Chem. Soc. 126, 14567 (2004)CrossRefGoogle Scholar
  61. [51]
    M Zheng, A Jagota, E D Semke, B A Diner, R S Mclean, S R Lustig, R E Richardson and N G Tassi,Nat. Mater. 2, 338 (2003)CrossRefADSGoogle Scholar
  62. [52]
    M Zheng, A Jagota, M S Strano, A P Santos, P Barone, S G Chou, B A Diner, M S Dresselhaus, R S McLean, G B Onoa, G G Samsonidze, E D Semke, M Usrey and D J Walls,Science 302, 1545 (2003)CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2005

Authors and Affiliations

  • Prashant Dubey
    • 1
  • Devarajan Muthukumaran
    • 1
  • Subhashis Dash
    • 1
  • Rupa Mukhopadhyay
    • 1
  • Sabyasachi Sarkar
    • 1
  1. 1.Department of ChemistryIndian Institute of TechnologyKanpurIndia

Personalised recommendations