Skip to main content
Log in

A static study of multilayered multiconductor transmission lines

Étude statique des lignes À plusieurs conducteurs et diÉlectriques

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

Accurate knowledge of passive MIES and MMIGS has become as important as knowledge of active components. A rather classical method of analysis of multi-dielectric multistrip transmission lines is presented. This analysis, restricted to the quasi-static approach, is based on a variational method in the discrete spectral domain, combined with the transverse transmission line method devoted to the calculation of Green’s functions. This work, devoted only to the study of the distributed parameters of the structures, i.e. in any transverse section, is followed by a complete modal analysis with respect to the direction of propagation and the possible boundary conditions at the terminals. These calculations consist actually mostly of an eigenvalue problem. They are carried out analytically as far as possible by means of a block matrix algebraic formalism particularly well suited to the problem. The mode impedances and the impedance matrix are obtained analytically in a general manner. All the parameters of new structures with four conductors are completely made explicit.

Résumé

La connaissance précise des caractéristiques des éléments passifs dans les circuits intégrés hyper-fréquences, monolithiques ou non, est devenue aujourd’ hui aussi importante que celles des composants actifs. Une méthode assez classique d’analyse des lignes de transmission à conducteurs et couches diélectriques multiples est présentée. Cette étude, restreinte au cadre de l’approche quasi-statique, est fondée sur une analyse variationnelle dans le domaine spectral discret, associée à la méthode de la ligne de transmission transverse pour le calcul des fonctions de Green introduites. Ce travail, consacré d’abord à l’étude des caractéristiques linéiques des structures, c’est-à-dire dans une section transverse quelconque, est complété par une analyse modale complète selon la direction de propagation et les éventuelles conditions terminales aux différents accès. Ces calculs, consistant en fait essentiellement en un problème aux valeurs propres, sont menés analytique-ment aussi loin que possible au moyen d’un formalisme algébrique de matrices par blocs particulièrement bien adapté au problème ; les impédances de mode ainsi que la matrice d’impédance sont obtenues en toute généralité ; tous les paramètres de nouvelles structures à quatre conducteurs sont totalement explicités.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gupta (K. CO, Garg (R.), Bahl (I. J.). Microstrip lines and slotlines. Artech House, Inc. (1979).

  2. Medina (F.), Horno (M.), Baudrand (H.). Generalized spectral analysis of planar lines on layered media including uniaxial and biaxial dielectric substrates. IEEE Trans. MTT (March 1989), 37, no 3.

  3. Mansour (R. R.), Macphe (R. H.). A unified hybrid-mode analysis for planar transmission lines with multilayer isotro-pic/anisotropic substrates. IEEE Trans. MTT (Dec. 1987), 35, no 12.

  4. Koul (S. K.), Khanna. Broadside-coupled rectangular resonators in suspended stripline with single and double dielectrics. IEE Proc. (Dec. 1990), 137, no 6.

  5. Omar (A. S.), Schünemanno (K.). Space-domain decoupling of LSE and LSM fields in generalized planar guiding structures. IEEE Trans. MTT (Dec. 1984), 32, no 12.

  6. Kiatazawa (T.). Variational method for multiconductor coupled striplines with stratified anisotropic media. IEEE Trans. MTT (March 1989), 37, no 3.

    Google Scholar 

  7. Yamashtta (E.), Mittra (R.). Variational method for the analysis of microstrip transmission lines. IEEE Trans. MTT (Aug. 1968), 16, no 8.

  8. Weeks (W. T.). Calculation of coefficients of capacitance of multiconductor transmission lines in the presence of a dielectric interface. IEEE Trans. MTT (Jan. 1970), 18, no 1.

  9. Itoh (T.). Generalized spectral domain method for multiconductor printed lines and its application to tunable suspended microstrips. IEEE Trans. MTT (Dec. 1978), 26, no 12.

  10. Bhat (B.), Koul (S. K.). Unified approach to solve a class of strip and microstrip-like transmission lines. IEEE Trans. MTT (May 1982), 30, no 5.

  11. Medina (F.), Horno (M.). Upper and lower bounds on mode capacitances for a large class of anisotropic multilayered microstrip-like transmission lines. IEE Proc. (June 1985), 132, no 3.

  12. Bahl (I. J.), Bhartia (P.). Characteristics of inhomogeneous broadside-coupled striplines. IEEE Trans. MTT (June 1980), 28, no 6.

    Google Scholar 

  13. Delbare (W.), De Zutter (D.). Space-domain Green’s function approach to the capacitance calculation of multiconductor lines in multilayered dielectrics with improved surface charge modeling. IEEE Trans. MTT (Oct. 1989), 37, no 10.

  14. Sawicki (A.), Sachse (K.). Lower and upper bound calculations on the capacitance of multiconductor printed transmission lines using the spectral-domain approach and variational method. IEEE Trans. MTT (Feb. 1986), 34, no 2.

  15. Wei (C), Harington (R. F.), Mautz (J. R.), Sarkar (T. K.). Multiconductor transmission lines in multilayered dielectric media. IEEE Trans. MTT (Apr. 1984), 32, no 4.

  16. Rao (S. M.), Sarkar (T. K.), Harington (R. F.). The electrostatic field of conducting bodies in multiple dielectric media. IEEE Trans. MTT (Nov. 1984), 32, no 11.

  17. Naiheng (Y), Harington (R. F.). Characteristic impedance of transmission lines with arbitrary dielectrics under the tem approximation. IEEE Trans. MTT (Apr. 1986), 34, no 4.

  18. Wheeler (H. A.). Transmission-line properties of parallel strips separated by a dielectric sheet. IEEE Trans. MTT (March 1965), 313, no 3.

  19. Wheeler (H. A.). Trannsmission-line properties of a strip on a dielectric sheet on a plane. IEEE Trans. MTT (Aug. 1977), 25, no 8.

  20. Chang (W. H.). Analytical IC metal-line capacitance formulas.IEEE Trans. MTT (Sep. 1976),24, no 9, p. 608.

    Article  Google Scholar 

  21. Davis (M. E.), Williams (E. W), Celestini (A. C). Finite-boundary corrections to the coplanar waveguide analysis.IEEE Trans. MTT (Sep. 1976),321, no 9, p. 594.

    Google Scholar 

  22. Homentcovschi, Manolescu, Manolescu, Kreindler—An analytical solution for the coupled stripline-like microstrip line problem. IEEE Trans. MTT (June 1988), 36, no 6.

  23. Holloway (A. L.). Generalized microstrip on a dielectric sheet. IEEE Trans. MTT (June 1988), 36, no 6.

    Google Scholar 

  24. Gelder (D.). Numerical determination of microstrip properties using the transverse field components. IEE Proc (Apr. 1970), 117, no 4.

  25. Hatsuda (T.). Computation of coplanar-type strip line characteristics by relaxation method and its applications to microwave circuits. IEEE Trans. MTT (Oct. 1975), 23, no 10.

  26. Stinehelfer (H. E.). An accurate calculation of uniform micros-trip transmission lines. IEEE Trans. MTT (July 1968), 16, no 7.

  27. Corr (D. G.), Davies (J. B.). Computer analysis of the fundamental and higher order modes in single and coupled microstrip. IEEE Trans. MTT (Oct. 1972), 20, no 10.

  28. Yamashita (E.). Analysis of microstrip-like transmission lines by non-uniform discretization of integral equations. IEEE Trans. MTT (Apr. 1976), 24, no 4.

  29. Silvester (P.). tem wave properties of microstrip transmission lines. IEE Proc. (Jan. 1968), 115, no 1.

  30. Itoh (T.), Hebert (A. S.). A generalized spectral domain analysis for coupled suspended microstriplines with tuning septums. IEEE Trans. MTT (Oct. 1978), 26, no 10.

  31. Medina (F.), Horno (M.). Determination of Green’s function matrix for multiconductor and anisotropic multidielectric planar transmission lines. A variational approach. IEEE Trans. MTT (Oct. 1985), 33, no 10.

  32. Medina (F.), Horno (M.). Capacitance and inductance matrices for multistrip structures in multilayered anisotropic dielectrics. IEEE Trans. MTT (Nov. 1987), 35, no 11.

  33. Horno (M.), Medina (F.). Accurate approach for computing quasi-static parameters of symmetrical broadside-coupled micros- trips in multilayered anisotropic dielectrics. IEEE Trans. MTT (June 1986), 34, no 6.

  34. Horno (M.). Upper and lower bounds on capacitances of coupled microstrip lines with anisotropic substrates. IEE Proc. (June 1982), 129, no 3.

  35. Chang (Y.), Chang (I. C). Simple method for the variational analysis of a generalized N-dielectric-layer transmission line. Electronic Letters (Feb. 1970), 6, no 3.

  36. Chang (Y.), Chang-Yu (W.). Extension of Chang-Chang’s method to analysis of generalized multilayer and multiconductor transmission-line systems. Electronic Letters (1971), 7.

  37. Crampagne (R.), Ahmadpanah (M.), Guiraud (J.-L.). A simple method for determining Green’s function for a large class of MIC lines having multilayered dielectric structures. IEEE Trans. MTT (Feb. 1978), 26, no 2.

  38. Matthaei (G. L.), Young (L.), Jones (E. M. T.). Microwave niters, impedance-matching networks and coupling structures. Artech House, Inc. (1980).

  39. Harington (R. F.), Wei (C). Losses on multiconductor transmission lines in multilayered dielectric media. IEEE Trans. MTT (July 1984), 32, no 7.

  40. Kitazawa (T.), Hayashi (Y.). Asymmetrical three-line coupled striplines with anisotropic substrates. IEEE Trans. MTT (July 1986), 34, no 7.

  41. Bryant (T. G.), Weiss (J. A.). Parameters of microstrip transmission lines and of coupled pairs of microstrip lines. IEEE Trans. MTT (Dec. 1968), 16, no 12.

  42. Garg (R.), Bahl (I. J.). Characteristics of coupled microstriplines. IEEE Trans. MTT (July 1979), 27, no 7.

  43. Coats. An octave-band switched-line microstrip 3-b diode phase shifter. IEEE Trans. MTT (July 1973), 21.

  44. Judd, Whiteley, Clowes, Rickard. An analytical method for calculating microstrip transmission line parameters. IEEE Trans. MTT (Feb. 1970), 18, no 2.

  45. Akhtarzad, Rowbotham, Johns. The design of coupled micros-trip lines. IEEE Trans. MTT (June 1975), 23, no 6.

  46. Kammler (D. W.). Calculation of characteristic admittances and coupling coefficients for strip transmission lines. IEEE Trans. MTT (Nov. 1968), 16, no 11.

  47. Tripathi (V. J.). Asymmetrie coupled transmission lines in an inhomogeneous medium. IEEE Trans. MTT (Sep. 1975), 23, no 9.

  48. Zysman, Johnson. Coupled transmission line networks in an inhomogeneous dielectric medium. IEEE Trans. MTT (Oct. 1969), 17, no 10.

    Google Scholar 

  49. Tripathi (V. J.). On the analysis of symmetrical three-line microstrip circuits. IEEE Trans. MTT (Sep. 1977), 25, no 9.

  50. Colln (R. E.). Field theory of guided waves. McGraw-Hill (1960).

  51. Combes (P.). Ondes métriques et centimétriques. Dunod (1982).

  52. ScHELKUNOFF. Electromagnetic fields. Blaisdell (1963).

  53. TzuANO, Chen, Peng. Full-wave analysis of lossy quasi-planar transmission line incorporating the metal modes. IEEE Trans. MTT (Dec. 1990), 378, no 12.

  54. Roblin (C.). Simulation de circuit passifs RF. Application à l’intégration monolithique d’un oscillateur Josephson à un récepteur hétérodyne sis. Thesis ENSAE (Sup’Aéro) (Nov. 1992).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roblin, C., CretÉ, D. A static study of multilayered multiconductor transmission lines. Ann. Télécommun. 49, 159–177 (1994). https://doi.org/10.1007/BF02999479

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02999479

Key words

Navigation