Skip to main content
Log in

Manganese status, gut endogenous losses of manganese, and antioxidant enzyme activity in rats fed varying levels of manganese and fat

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We hypothesized that manganese deficient animals fed high vs moderate levels of polyunsaturated fat would either manifest evidence of increased oxidative stress or would experience compensatory changes in antioxidant enzymes and/or shifts in manganese utilization that result in decreased endogenous gut manganese losses. Rats (females in Study 1, males in Study 2,n = 8/treatment) were fed diets that contained 5 or 20% corn oil by weight and either 0.01 or 1.5 μmol manganese/g diet. In study 2,54Mn complexed to albumin was injected into the portal vein to assess gut endogenous losses of manganese. The manganese deficient rats:

  1. 1.

    Had 30–50% lower liver, tibia, kidney, spleen, and pancreas manganese concentrations than manganese adequate rats;

  2. 2.

    Conserved manganese through ≈70-fold reductions in endogenous fecal losses of manganese;

  3. 3.

    Had lower heart manganese superoxide dismutase (MnSOD) activity; and

  4. 4.

    Experienced only two minor compensatory changes in the activity of copper-zinc superoxide dismutase (CuZnSOD) and catalase.

Gut endogenous losses of manganese tended to account for a smaller proportion of absorbed manganese in rats fed high-fat diets; otherwise fat intake had few effects on tissue manganese concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. US Department of Health and Human Services, Public Health Services. The Surgeon General's Report on Nutrition and Health. US Government Printing Office, Washington DC. (1988).

    Google Scholar 

  2. M. R. L'Abbé, K. D. Trick, and J. L. Beare-Rogers,J. Nutr. 121, 1331–1340 (1991).

    PubMed  Google Scholar 

  3. G. Nalbone, J. Leonardi, E. Termine, H. Portugal, P. Lechene, A. Pauli, and H. Lafont,Lipids 24, 179–186 (1989).

    Article  PubMed  CAS  Google Scholar 

  4. M. Nardini, C. Scaccini, M. D'Aquino, P. C. Benedetti, M. D. Felice, and G. Tomassi,J. Nutr. Biochem. 4, 39–44 (1993).

    Article  CAS  Google Scholar 

  5. S. Salvati, L. M. Campeggi, P. C. Benedetti, M. D. Felice, V. Gentile, M. Nardini, and G. Tomassi,J. Nutr. Biochem. 4, 346–350 (1993).

    Article  CAS  Google Scholar 

  6. S. Zidenberg-Cherr, C. L. Keen, B. Lönnerdal, and L. S. Hurley,J. Nutr. 113, 2498–2504 (1983).

    PubMed  CAS  Google Scholar 

  7. G. DeRosa, C. L. Keen, R. M. Leach, and L. S. Hurley,J. Nutr. 110, 795–804 (1980).

    CAS  Google Scholar 

  8. D. I. Paynter, ChangesJ. Nutr. 110, 437–447 (1980).

    CAS  Google Scholar 

  9. D. I. Paynter,Biol. Trace Element Res. 2, 121–135 (1980).

    Article  CAS  Google Scholar 

  10. C. D. Davis, D. M. Ney, and J. L. Greger,J. Nutr. 120, 507–513 (1990).

    PubMed  CAS  Google Scholar 

  11. C. D. Davis, T. W. Wolf, and J. L. Greger,J. Nutr. 122, 1300–1308 (1992).

    PubMed  CAS  Google Scholar 

  12. C. D. Davis and J. L. Greger,Am. J. Clin. Nutr. 55, 747–752 (1992).

    PubMed  CAS  Google Scholar 

  13. C. D. Davis, L. Zech, and J. L. Greger,Proc. Soc. Exp. Biol. Med. 202, 103–108 (1993).

    PubMed  CAS  Google Scholar 

  14. M. Brandt and V. L. Schramm, In;Manganese in Metabolism and Enzyme Function, V. L. Schramm, and F. C. Wedler, (eds.), Academic, Press, New York: p. 8 (1986).

    Google Scholar 

  15. American Institute of Nutrition,J. Nutr. 107, 1340–1348 (1977).

    Google Scholar 

  16. S. Marklund and G. Marklund,Eur. J. Biochem. 47, 469–474 (1974).

    Article  PubMed  CAS  Google Scholar 

  17. H. Aebi,Meth. Enz. 105, 121–126 (1984).

    Article  CAS  Google Scholar 

  18. W. A. Günzler, H. Kremers, and L. Flohé,Z. Klin. Chem. Klin. Biochem. 12, 444–448 (1974).

    PubMed  Google Scholar 

  19. R. A. Lawrence and R. F. Burk,Bichem., Biophys. Res. Commun. 71, 952–958 (1976).

    Article  CAS  Google Scholar 

  20. H. Esterbauer and K. H. Cheeseman,Methods Enzymol. 186, 407–421 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. E. Weigand, M. Kirchgessner, and U. Helbig,Biol. Trace Element Res. 10, 265–279 (1986).

    Article  CAS  Google Scholar 

  22. SAS Institute, Inc.,SAS User's Guide: Statistics, Version 5 Ed. SAS Institute, Cary, NC (1985).

    Google Scholar 

  23. J. R. Wispé, J. C. Clark, M. S. Burhans, K. E. Kropp, T. R. Korfhagen, and J. A. Whitsett,Biochem. Biophys. Acta 994, 30–36 (1989).

    PubMed  Google Scholar 

  24. B. Halliwell and S. Chirico,Am. J. Clin. Nutr. 57, 715S-725S (1993).

    PubMed  CAS  Google Scholar 

  25. K. Asayama, N. W. Kooy, and I. M. Burr,J. Lab. Clin. Med. 107, 459–464 (1986).

    PubMed  CAS  Google Scholar 

  26. L. D. Lewis, and J. A. Williams,News Physiol. Sci. 5, 163–167 (1990).

    CAS  Google Scholar 

  27. L. Ovesen, R. Chu, and L. Howard,Am. J. Clin. Nutr. 38, 270–277 (1983).

    PubMed  CAS  Google Scholar 

  28. C. D. Klaassen,Tox. Appl. Pharmacol. 29, 458–468 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malecki, E.A., Huttner, D.L. & Greger, J.L. Manganese status, gut endogenous losses of manganese, and antioxidant enzyme activity in rats fed varying levels of manganese and fat. Biol Trace Elem Res 42, 17–29 (1994). https://doi.org/10.1007/BF02990485

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02990485

Index Entries

Navigation