Skip to main content
Log in

Determination of nonheme iron using inductively coupled plasma-atomic emission spectrometry

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A technique for the rapid and accurate estimation of nonheme iron using inductively coupled plasma-atomic emission spectrometry is described. Yttrium was used as an internal standard. An external calibration method was used. The standards were prepared in a matrix composed of 2.5N HCl in 10% (w/v) trichloroacetic acid. The supernatant and coagulum fractions of liver nonheme iron were separated by the method of Drysdale and Ramsay with minor modification (13). The data determined by this procedure was compared and found to be agreement with data determined by the method of Hallgren (12). To evaluate the iron status of rats, hemoglobin and liver nonheme iron were determined. Hemoglobin and all of the nonheme iron fractions of the rats fed an iron-deficient diet were significantly lower than those of the rats fed an iron-sufficient diet. The blood content in the liver was estimated to be 80 μL/g from the blood iron concentration, and the difference between total and nonheme iron concentration in liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. N. Munro and M. C. Linder,Physiol. Rev. 58, 317–396 (1978).

    PubMed  CAS  Google Scholar 

  2. B. W. Gabrio, A. Shoden, and C. A. Finch,J. Biol. Chem. 204, 815–821 (1953).

    PubMed  CAS  Google Scholar 

  3. D. Drabkin,Physiol. Rev. 31, 345–431 (1951).

    PubMed  CAS  Google Scholar 

  4. H. G. du Défaix, R. Puente, B. Vidal, E. Pérez, and H. Vidal,Am. J. Clin. Nutr. 33, 133–136 (1980).

    Google Scholar 

  5. S. C. Finch and C. A. Finch,Medicine 34, 381–430 (1955).

    Article  PubMed  CAS  Google Scholar 

  6. S. M. Ahmed, M. Kimura, and Y. Itokawa,Trace Nutrients Research (Kyoto, Japan) 4, 121–126 (1988).

    Google Scholar 

  7. M. Kimura and Y. Itokawa,Magnesium in Health and Disease, Y. Itokawa and J. Durlach, eds., John Libbey, London & Paris, pp. 95–102 (1989).

    Google Scholar 

  8. T. L. Sourkes, K. Lloyd, and H. Birnbaum,Can. J. Biochem. 46, 267–271. (1968).

    Article  PubMed  CAS  Google Scholar 

  9. F. H. Nielsen, S. H. Givand, and D. R. Myron,Fed. Proc. 34, 923 (1975).

    Google Scholar 

  10. K. Yokoi, M. Kimura, and Y. Itokawa,Biol. Trace Elem. Res. 24, 223–231 (1990).

    Article  PubMed  CAS  Google Scholar 

  11. J. W. Drysdale and H. N. Munro,Biochem. J. 95, 851–858 (1965).

    PubMed  CAS  Google Scholar 

  12. B. Hallgren,Acta Soc. Med. 59, 79–208 (1954).

    CAS  Google Scholar 

  13. J. W. Drysdale and W. N. M. Ramsay,Biochem. J. 95, 282–288 (1965)

    PubMed  CAS  Google Scholar 

  14. S. Greenfield,Analyst (London) 105, 1032–1044 (1980).

    Article  CAS  Google Scholar 

  15. W. J. Boyko, P. N. Keliher, and J. M. Malloy,Anal. Chem. 52, 53R-69R (1980).

    Article  CAS  Google Scholar 

  16. G. J. Schmidt and W. Slavin,Anal. Chem. 54, 2491–2495 (1982).

    Article  CAS  Google Scholar 

  17. V. Laufberger,Bull. Soc. Chim. Biol. 19, 1575–1582 (1937).

    CAS  Google Scholar 

  18. J. A. Millar, R. L. C. Cumming, J. A. Smith, and A. Goldberg,Biochem. J. 119 643–649 (1970).

    PubMed  CAS  Google Scholar 

  19. D. A. Lipschitz, T. H. Bothwell, H. C. Seftel, A. A. Wapnick, and R. W. Charlton,Brit. J. Haematol 20, 155–163 (1971).

    Article  CAS  Google Scholar 

  20. C. P. Van Wyk, M. Linder-Horowitz, and H. N. Munro,J. Biol. Chem. 246, 1025–1031 (1971).

    PubMed  Google Scholar 

  21. A. Vidnes and L. Holgeland,Biochem. Biophys. Acta 328, 365–372 (1973).

    PubMed  CAS  Google Scholar 

  22. A. Shukla, K. N. Agarwal, and G. S. Shukla,Biol. Trace Elem. Res. 22, 141–152 (1989).

    Article  PubMed  CAS  Google Scholar 

  23. E. H. Morgan,J. Physiol. (London) 158, 573–586 (1961).

    CAS  Google Scholar 

  24. J. C. Wyllie and N. Kaufman,Brit. J. Haematol. 20, 321–327 (1971).

    Article  CAS  Google Scholar 

  25. E. M. Scott and R. H. McCoy,Arch. Biochem. 5, 349–355 (1944).

    CAS  Google Scholar 

  26. A. I. Lau and M. L. Failla,J. Nutr. 114, 224–233 (1984).

    PubMed  CAS  Google Scholar 

  27. A. R. Sherman, H. A. Guthrie, and I. Wolinsky,Proc. Soc. Exptl. Biol. Med. 156, 396–401 (1977).

    CAS  Google Scholar 

  28. M. Uehira, Y. Endo, G. Mowlah, K. Suzuki, and S. Goto,Nutr. Rep. Int. 35, 1023–1034 (1987).

    Google Scholar 

  29. A. Robertson, J. N. Morrison, A. M. Wood, and I. Bremner,J. Nutr. 119, 439–445 (1989).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokoi, K., Kimura, M. & Itokawa, Y. Determination of nonheme iron using inductively coupled plasma-atomic emission spectrometry. Biol Trace Elem Res 31, 265–279 (1991). https://doi.org/10.1007/BF02990196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02990196

Index Entries

Navigation