Skip to main content
Log in

Hepatic zinc, copper, and iron in the developing turkey embryo and newly hatched poult

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The ontogeny of hepatic tissue growth and trace metal deposition was examined in the developing turkey embryo and newly hatched poult. Hepatic concentrations of zinc and iron in the embryo declined by about twofold between day 16 of incubation and hatching. Hepatic copper concentration increased approximately fourfold by day 23 of incubation and then declined rapidly through hatching. During the post-hatching period, hepatic zinc concentration increased twofold by day 10, whereas a small increase in hepatic iron concentration occurred just prior to hatching and continued through the third day post-hatching. A significant positive correlation existed between hepatic zinc and iron concentrations in the developing embryo. The concentrations of both these metals were inversely correlated with hepatic copper concentration during the same time. Total hepatic zinc and iron content increased throughout the entire time studied, whereas total copper content increased up to hatching and then declined during the first week post-hatching. The most rapid phase of hepatic metal accretion differed for each metal, with zinc being rapidly accumulated during the post-hatching period, copper during the last half of incubation and iron at about the time of hatching and the first few days post-hatching. Each of these metals demonstrated a specific relationship to hepatic tissue growth that changed between the embryonic and neonatal periods of development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Savage,Fed. Proc. 27, 927 (1968).

    PubMed  CAS  Google Scholar 

  2. W. C. Supplee, D. L. Blamberg, O. D. Keene, G. F. Combs, and G. L. Romoser,Foult. Sa. 37, 1245 (1958).

    Google Scholar 

  3. D. E. Turk, M. L. Sunde, and W. G, Hoekstra,Foult, Sci. 38, 1256 (1959).

    Google Scholar 

  4. D. L. Blamberg, U. B. Blackwood, W, C. Supplee, and G. F. Combs,Proc. Soc. Exp. Biol. Med. 104, 217 (1960).

    PubMed  CAS  Google Scholar 

  5. E. W. Kienholz, D. E. Turk, M. L. Sunde, and W. G. Hoekstra,J. Nutr. 75, 211 (1961).

    PubMed  CAS  Google Scholar 

  6. D. W. Bird, B. L. O’Dell, and J. E. Savage,Foult Sci. 42, 1256 (1963).

    Google Scholar 

  7. C. F. Simpson, J. E. Jones, and R, H. Harms,J. Nutr. 91, 283 (1967).

    PubMed  CAS  Google Scholar 

  8. W. A. Dewar, P. W. Teague, and J. N. Downie,Br Foult. Sci. 15, 119 (1974).

    Article  CAS  Google Scholar 

  9. W. D. McFarlane and H. I. Milne,J. Biol. Chem. 107, 309 (1934).

    CAS  Google Scholar 

  10. B. C. Sandrock, S. R. Kern, and S. E. Bryan,Biol. Trace Element Res. 5, 503 (1983).

    Article  CAS  Google Scholar 

  11. W. W. Saylor and J. V. Downer,Poult. Sci. 61, 1538 (1982).

    Google Scholar 

  12. E. M. Widdowson, J. Dauncey, and J, C. L. Shaw,Froc. Nutr. Soc. 33, 275 (1974).

    CAS  Google Scholar 

  13. I. Bremner, R. B. Williams, and B. W. Young,Br. J. Nutr. 38, 87 (1977).

    Article  PubMed  CAS  Google Scholar 

  14. M. Hidiroglou,Can. Vet. J. 21, 328 (1980).

    PubMed  CAS  Google Scholar 

  15. L. S. Hurley, C. L. Keen, and B. Lonnerdal, inBiological Roles of Copper, Ciba Foundation, Excerpta Medica, Amsterdam, 1980, pp. 227–245.

  16. C. L. Keen and L. S. Hurley,Mech Ag. Dev. 13, 161 (1980).

    Article  CAS  Google Scholar 

  17. L. S. Hurley,The Johns Hopkins Med. J. 148, 1 (1981).

    CAS  Google Scholar 

  18. L. S. Hurley, C. L. Keen, and B. Lonnerdal,Fed. Proc. 42, 1735 (1983).

    PubMed  CAS  Google Scholar 

  19. W. C. Buhi, C. A. Ducsay, F. F. Bartol, F. W. Bazer, and R. M. Roberts,Placenta 4, 455 (1983).

    PubMed  CAS  Google Scholar 

  20. SAS Institute Inc., inSAS Users Guide: Statistics, 1982 Edition, SAS Institute Inc., Carey, NC, 1982,

  21. G.K. Davis, inMicronutrient Interactions: Vitamins, Minerals and Hazardous El- ements, Ann. N.Y. Acad. Sci., vol. 355, O. A. Levander and L. Cheng, eds., NY Academy of Science, NY, 1980, pp. 130–137.

    Google Scholar 

  22. B. M. Freeman and M. A. Vince,Development of the Avian Embryo, Wiley, NY, 1974.

    Google Scholar 

  23. I. Kimura,Develop. Growth Diff. 25, 531 (1983).

    Article  CAS  Google Scholar 

  24. M. P. Richards,Poult. Sci. 61, 2089 (1982).

    PubMed  CAS  Google Scholar 

  25. G. W. Evans,World Rev. Nutr. Diet. 17, 225 (1973).

    PubMed  CAS  Google Scholar 

  26. T. Terao and C A. Owen Jr.,Am J. Physiol. 232, E 172 (1977).

    Google Scholar 

  27. R. Mason, A. Bakka, G. P. Samarawickrama, and M. Webb,Br. J. Nutr. 45, 375 (1980).

    Article  Google Scholar 

  28. H. Porter,Biochem. Biophys. Res. Commun. 56, 61 (1974).

    Article  Google Scholar 

  29. L. Ryden and H. F. Deutsch,J. Biol. Chem. 253, 519 (1978).

    PubMed  CAS  Google Scholar 

  30. H. Rupp and U. Weser,FEBS Lett. 44, 293 (1974).

    Article  PubMed  CAS  Google Scholar 

  31. M. P. Richards,Poult. Sci. 60, 1718 (1981).

    Google Scholar 

  32. M. P. Richards, R. W. Rosebrough, and N. C. Steele,Comp. Biochem. PhysioL 78A, 525 (1984).

    Article  CAS  Google Scholar 

  33. S. K. S. Srai, A. K. Burroughs, B. Wood, T. L. Dormandy, and O. Epstein,Biochem Soc. Trans. 11, 718 (1983).

    CAS  Google Scholar 

  34. M. Webb, D. Dinsdale, and D. Holt, in Proceedings of the Fifth International Symposium on Trace Element Metabolism in Animals and Humans, C. F. Mills, ed., 1985, p. 71, 5, 1984, p. 71.

  35. M. P. Richards, unpublished observations.

  36. R. Tupper, R. W. E. Watts, and A. Wormall,Biochem. J. 57, 245 (1954).

    PubMed  CAS  Google Scholar 

  37. G. Schmidt, M. J. Bessman, M. D. Hickey, and S. J. Thannhauser,J. Biol. Chem. 223, 1027 (1956).

    PubMed  CAS  Google Scholar 

  38. O. Greengard, A. Sentenac, and N. Mendelsohn,Biochem. Biophys. Acta. 90, 406 (1964).

    PubMed  CAS  Google Scholar 

  39. W. D. McFarlane,Biochem. J. 25, 1061 (1932).

    Google Scholar 

  40. C. R. Grau, T. E. Roudybush, and W. H. McGibbon,Poult. Sci. 58, 1143 (1979).

    CAS  Google Scholar 

  41. R. W. Burley and W. H. Cook,Can, J. Biochem. Physiol. 39, 1295 (1961).

    CAS  Google Scholar 

  42. Z. Saito, G. Martin, and W. H. Cook,Can. J. Biochem. 43, 1755 (1965).

    Article  PubMed  CAS  Google Scholar 

  43. J. Williams,Biochem J. 183, 346 (1962).

    Google Scholar 

  44. Z. Saito and W. G. Martin,Can. J. Biochem. 44, 293 (1966).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richards, M.P., Weinland, B.T. Hepatic zinc, copper, and iron in the developing turkey embryo and newly hatched poult. Biol Trace Elem Res 7, 269–284 (1985). https://doi.org/10.1007/BF02989252

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02989252

Index Entries

Navigation