Skip to main content
Log in

Effect of Dietary Supplemental Zinc on Laying Performance, Egg Quality, and Plasma Hormone Levels of Breeding Pigeons

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the dietary zinc requirement of parental pigeons for better laying and reproductive performance, egg quality, sex hormones, and mineral content in eggs. A total of 160 pairs of healthy American Silver King pigeons were randomly assigned to five treatments of eight replicate cages each with four pairs of birds per cage, and fed a basal diet without zinc supplementation or the basal diet supplemented with 30, 60, 90, and 120 mg of zinc/kg (ZnSO4·7H2O). The experiment lasted for 45 days, including two laying cycles. Results indicated the egg production rate (P = 0.081), egg shape index (P = 0.038), egg eggshell percentage (P = 0.070), and zinc and calcium contents (P < 0.01) tended to be affected or significantly affected by zinc addition. They increased quadratically with dietary zinc levels (P < 0.05). Besides, shell thickness (P = 0.069), plasma testosterone (P = 0.008), LH, and carbonic anhydrase contents (P < 0.05) tended to be affected or significantly affected by zinc addition. They increased linearly as dietary zinc level increased (P < 0.05). Compared with the control, 60 mg/kg zinc addition increased egg production rate, egg shape index, zinc and calcium contents in eggshell, and plasma testosterone concentration in pigeons (P < 0.05), and tended to increase the eggshell percentage (P = 0.07). Besides, supplemental 120 mg/kg zinc had higher shell thickness and LH content than control (P < 0.05), but had no difference with 60 mg/kg zinc addition. In conclusion, the supplementation of zinc at the level of 60 mg/kg to basal diet improved laying performance by increasing eggshell quality and sex hormone levels of breeding pigeons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data of this study will be made available on reasonable request.

The study was carried out in accordance with the guidelines set by the Animal Care and Use Committee (permit number: SYXK-2017–0005) of the Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences (IAHVM-BAAFS), Beijing, China. The protocols were approved by the Animal Care and Use Committee of IAHVM-BAAFS.

References

  1. Sun C, Liu J, Li W, Xu G, Yang N (2017) Divergent proteome patterns of egg albumen from domestic chicken, duck, goose, turkey, quail and pigeon. Proteomics 17:17–18

    Google Scholar 

  2. Sun C, Liu J, Yang N, Xu G (2019) Egg quality and egg albumen property of domestic chicken, duck, goose, turkey, quail, and pigeon. Poult Sci 98(10):4516–4521

    Article  CAS  PubMed  Google Scholar 

  3. Moghtaderi M, Nabavizadeh SH, Hosseini Teshnizi S (2020) The frequency of cross-reactivity with various avian eggs among children with hen’s egg allergy using skin prick test results: fewer sensitizations with pigeon and goose egg. Allergol Immunopathol 48(3):265–269

    Article  Google Scholar 

  4. Goerlich VC, Dijkstra C, Schaafsma SM, Groothuis TG (2009) Testosterone has a long-term effect on primary sex ratio of first eggs in pigeons–in search of a mechanism. Gen Comp Endocrinol 163(1–2):184–192

    Article  CAS  PubMed  Google Scholar 

  5. Chang L, Xie P, Bu Z, Wang Q, Fu S, Mu C (2017) Effect of dietary lysine level on performance, egg quality and serum biochemical indices of laying pigeons. J Appl Poultry Res 2:152–158

    Google Scholar 

  6. Chang L, Zhang R, Fu S, Mu C, Tang Q, Bu Z (2019) Effects of different dietary calcium levels on the performance, egg quality, and albumen transparency of laying pigeons. Animals 9(3):110

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sarraude T, Hsu BY, Ruuskanen S, Groothuis T (2021) Is maternal thyroid hormone deposition subject to a trade-off between self and egg because of iodine? An experimental study in rock pigeon. J Exp Biol 224(20):jeb242203

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang Y, Yang H, Cao W, Li Y (2017) Effect of selenium supplementation on pigeon reproductive performance, selenium concentration and antioxidant status. Poult Sci 96(9):3407–3413

    Article  CAS  PubMed  Google Scholar 

  9. Zhu MJ, Zhu MJ, Ford SP, Means WJ, Hess BW, Nathanielsz PW, Du M (2006) Maternal nutrient restriction affects properties of skeletal muscle in offspring. J Physiol 575(1):241–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen X, Li X, He Z, Hou Z, Xu G, Yang N, Zheng J (2019) Comparative study of eggshell antibacterial effectivity in precocial and altricial birds using Escherichia coli. PLoS ONE 14(7):e0220054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berrang M, Frank J, Buhr R, Bailey J, Cox N, Mauldin J (1998) Eggshell characteristics and penetration by Salmonella through the productive life of a broiler breeder flock. Poult Sci 77(9):1446–1450

    Article  CAS  PubMed  Google Scholar 

  12. De Reu K, Messens W, Heyndrickx M, Rodenburg TB, Uyttendaele M, Herman L (2008) Bacterial contamination of table eggs and the influence of housing systems. Worlds Poult Sci J 64(1):5–19

    Article  Google Scholar 

  13. Bu Z, Xie P, Fu S (2015) Effect of energy and protein levels on performance, egg quality, and nutrient digestibility of laying pigeons. J Appl Poultry Res 4:371–379

    Article  Google Scholar 

  14. Xu Q, Wang X, Liu Y, Dong X, Zou X (2021) Parental dietary arachidonic acid altered serum fatty acid profile, hepatic antioxidant capacity, and lipid metabolism in domestic pigeons (Columba livia). Anim Sci J 92(1):e13616

    Article  CAS  PubMed  Google Scholar 

  15. Ji F, Zhang S, An Y, Wang Z, Shao Y, Du S, Li X, Sun X (2022) Influence of dietary phosphorus concentrations on the performance of rearing pigeons (Columba livia), and bone properties of squabs. Poult Sci 101(4):101744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ao T, Pierce J, Pescatore A, Cantor A, Dawson K, Ford M, Paul M (2011) Effects of feeding different concentration and forms of zinc on the performance and tissue mineral status of broiler chicks. Br Poult Sci 52(4):466–471

    Article  CAS  PubMed  Google Scholar 

  17. Liao X, Li W, Zhu Y, Zhang L, Lu L, Lin X, Luo X (2018) Effects of environmental temperature and dietary zinc on egg production performance, egg quality and antioxidant status and expression of heat-shock proteins in tissues of broiler breeders. Brit J Nutr 120(1):3–12

    Article  CAS  PubMed  Google Scholar 

  18. Li L, Miao L, Zhu M, Wang L, Zou X (2019) Dietary addition of zinc-methionine influenced eggshell quality by affecting calcium deposition in eggshell formation of laying hens. Brit J Nutr 122(9):961–973

    Article  CAS  PubMed  Google Scholar 

  19. Huang L, Li X, Wang W, Yang L, Zhu Y (2019) The role of zinc in poultry breeder and hen nutrition: an update. Biol Trace Elem Res 192(2):308–318

    Article  CAS  PubMed  Google Scholar 

  20. Rodríguez-Navarro AB, Marie P, Nys Y, Hincke MT, Gautron J (2015) Amorphous calcium carbonate controls avian eggshell mineralization: a new paradigm for understanding rapid eggshell calcification. J Struct Biol 190(3):291–303

    Article  PubMed  Google Scholar 

  21. Gao J, Nie W, Xing K, Guo Y (2019) Comparative study of different maternal zinc resource supplementation on performance and breast muscle development of their offspring. Biol Trace Elem Res 190(1):197–207

    Article  CAS  PubMed  Google Scholar 

  22. National Research Council (1994) Nutrient requirements for poultry. 9th rev. edn. National Academy Press, Washington, D.C.

  23. Yin Z, Dong X, Ma Y, Dong D (2017) Association of dopamine D2 receptor gene polymorphisms with reproduction traits in domestic pigeons (Columba livia). J Poult Sci 54(1):13–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dijkstra C, Riedstra B, Dekker A, Goerlich V (2010) An adaptive annual rhythm in the sex of six pigeon eggs. Behav Ecol Sociobiol 64(9):1393–1402

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kerns K, Zigo M, Sutovsky P (2018) Zinc: a necessary ion for mammalian sperm fertilization competency. Int J Mole Sci 19(12):4097

    Article  Google Scholar 

  26. Prabakar G, Gopi M, Kolluri G, Rokade JJ, Khillare G, Pearlin BV, Jadhav SE, Tyagi JS, Mohan J (2021) Effect of supplementation of zinc-methionine on egg production, semen quality, reproductive hormones, and hatchability in broiler breeders. Biol Trace Elem Res 199(12):4721–4730

    Article  CAS  PubMed  Google Scholar 

  27. Kucuk O, Kahraman A, Kurt I, Yildiz N, Onmaz A (2008) A combination of zinc and pyridoxine supplementation to the diet of laying hens improves performance and egg quality. Biol Trace Elem Res 126(1–3):165–175

    Article  CAS  PubMed  Google Scholar 

  28. Chen W, Wang S, Zhang H, Ruan D, Xia W, Cui Y, Zheng C, Lin Y (2017) Optimization of dietary zinc for egg production and antioxidant capacity in Chinese egg-laying ducks fed a diet based on corn-wheat bran and soybean meal. Poult Sci 96(7):2336–2343

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Wang S, Li K, Ruan D, Chen W, Xia W, Wang S, Abouelezz KFM, Zheng C (2020) Estimation of dietary zinc requirement for laying duck breeders: effects on productive and reproductive performance, egg quality, tibial characteristics, plasma biochemical and antioxidant indices, and zinc deposition. Poult Sci 99(1):454–462

    Article  CAS  PubMed  Google Scholar 

  30. Mayer AN, Vieira SL, Berwanger E, Angel CR, Kindlein L, França I, Noetzold TL (2019) Zinc requirements of broiler breeder hens. Poult Sci 98(3):1288–1301

    Article  CAS  PubMed  Google Scholar 

  31. Aghaei A, Khosravinia H, Mamuoei M, Azarfar A, Shahriari A (2017) Effects of dietary supplementation of zinc and α-tocopheryl acetate on performance and zinc concentrations in egg and tissues of Japanese quails. Poult Sci J 5:57–64

    Google Scholar 

  32. Richards MP (1997) Trace mineral metabolism in the avian embryo. Poult Sci 76:152–164

    Article  CAS  PubMed  Google Scholar 

  33. Oberleas D (1996) Mechanism of zinc homeostasis. J Inorg Biochem 62(4):231–241

    Article  CAS  PubMed  Google Scholar 

  34. Linares LB, Broomhead JN, Guaiume EA, Ledoux DR, Veum TL, Raboy V (2007) Effects of low phytate barley (Hordeum vulgare L) on zinc utilization in young broiler chicks. Poult Sci 86(2):299–308

    Article  CAS  PubMed  Google Scholar 

  35. Wood RJ, Zheng JJ (1997) High dietary calcium intakes reduce zinc absorption and balance in humans. Am J Clin Nutr 65(6):1803–1809

    Article  CAS  PubMed  Google Scholar 

  36. Swiatkiewicz S, Koreleski J (2008) The effect of zinc and manganese source in the diet for laying hens on eggshell and bones quality. Veterinarni Medicina (Praha) 53:555–563

    Article  CAS  Google Scholar 

  37. Dunn IC, Joseph NT, Bain M, Edmond A, Wilson PW, Milona P, Nys Y, Gautron J, Schmutz M, Preisinger R, Waddington D (2009) Polymorphisms in eggshell organic matrix genes associated with eggshell quality measurements in pedigree Rhode Island Red hens. Anim Genet 40(1):110–114

    Article  CAS  PubMed  Google Scholar 

  38. Mabe I, Rapp C, Bain MM, Nys Y (2003) Supplementation of a corn-soybean meal diet with manganese, copper, and zinc from organic or inorganic sources improves eggshell quality in aged laying hens. Poult Sci 82(12):1903–1913

    Article  CAS  PubMed  Google Scholar 

  39. Stefanello C, Santos TC, Murakami AE, Martins EN, Carneiro TC (2014) Productive performance, eggshell quality, and eggshell ultrastructure of laying hens fed diets supplemented with organic trace minerals. Poult Sci 93(1):104–113

    Article  CAS  PubMed  Google Scholar 

  40. El-Hack MEA, Alagawany M, Salah AS, Abdel-Latif MA, Farghly MF (2018) Effects of dietary supplementation of zinc oxide and zinc methionine on layer performance, egg quality, and blood serum indices. Biol Trace Elem Res 184:456–462

    Article  Google Scholar 

  41. Nedomová Š, Trnka J, Dvořáková P, Buchar J, Severa L (2009) Hen’s eggshell strength under impact loading. J Food Eng 94:350–357

    Article  Google Scholar 

  42. Gholizadeh H, Torki M, Mohammadi H (2022) Production performance, egg quality and some blood parameters of heat-stressed laying hens as affected by dietary supplemental Vit B6, Mg and Zn. Veterinary medicine and science 8(2):681–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gervais O, Nirasawa K, Vincenot CE, Nagamine Y, Moriya K (2016) Effect of long-term selection for non-destructive deformation on egg shape in White Leghorns. J Poult Sci 53(4):249–256

    Article  PubMed  PubMed Central  Google Scholar 

  44. Duman M, Sekeroglu A, Yildirim A, Eleroglu H, Camci O (2006) Relation between egg shape index and egg quality characteristics. Eur Poult Sci 80

  45. Gutiérrez E, Ordaz G, Pérez RE, Ortiz R, Juárez A (2021) Effect of the pigmentation, shine, weight, and shape index of the quail egg (Coturnix coturnix japonica) on the hatchability rate. J Adv Vet Anim Res 8(4):629–634

    PubMed  PubMed Central  Google Scholar 

  46. Tabatabaie MM, Aliarabi H, Saki AA, Ahmadi A, Hosseini Siyar SA (2007) Effect of different sources and levels of zinc on egg quality and laying hen performance. Pak J Biol Sci 10:3476–3478

    Article  CAS  PubMed  Google Scholar 

  47. Liu M, Lu Y, Gao P, Xie X, Li D, Yu D, Yu M (2020) Effect of curcumin on laying performance, egg quality, endocrine hormones, and immune activity in heat-stressed hens. Poult Sci 99(4):2196–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mohammadi H, Ansari-Pirsaraei Z (2014) Changes in some blood parameters and production performance of old laying hens due to growth hormone and testosterone injection. J Anim Physiol Anim Nutr 98:483–490

    Article  CAS  Google Scholar 

  49. Palermo R (2007) Differential actions of FSH and LH during folliculogenesis. Reprod Biomed Online 15(3):326–337

    Article  CAS  PubMed  Google Scholar 

  50. Thompson IR, Kaiser UB (2014) GnRH pulse frequency-dependent differential regulation of LH and FSH gene expression. Mol Cell Endocrinol 385:28–35

    Article  CAS  PubMed  Google Scholar 

  51. Li J, Huang D, Sun X, Li X, Cheng CHK (2019) Zinc mediates the action of androgen in acting as a downstream effector of luteinizing hormone on oocyte maturation in zebrafish. Biol Reprod 100(2):468–478

    Article  PubMed  Google Scholar 

  52. Xu X, Chen X, Hu H, Dailey AB, Taylor BD (2015) Current opinion on the role of testosterone in the development of prostate cancer: a dynamic model. BMC Cancer 15:806

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kothari RP, Chaudhari AR (2016) Zinc levels in seminal fluid in infertile males and its relation with serum free testosterone. J Clin Diagn Res 10(5):CC05–CC08

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Saleh AA, Eltantawy MS, Gawish EM, Younis HH, Amber KA, Abd ELAEME, Ebeid TA (2020) Impact of dietary organic mineral supplementation on reproductive performance, egg quality characteristics, lipid oxidation, ovarian follicular development, and immune response in laying hens under high ambient temperature. Biol Trace Elem Res 195(2):506–514

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Reform and development project of Beijing Academy of Agriculture and Forestry Science under grant number XMSSYJJ202204 and the Innovation capacity building project of Beijing Academy of Agriculture and Forestry Science under grant number: KJCX 20200404.

Author information

Authors and Affiliations

Authors

Contributions

Yuxin Shao analyzed the data and wrote the manuscript. Xing Li and Shaohua Du carried out the animal experiments. Xiaoshan Sun collected the sample and material. Yangyang Wang and Dongdong Zhao prepared all the tables. Zheng Wang designed and supervised the experiment. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zheng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Li, X., Du, S. et al. Effect of Dietary Supplemental Zinc on Laying Performance, Egg Quality, and Plasma Hormone Levels of Breeding Pigeons. Biol Trace Elem Res 201, 2991–2999 (2023). https://doi.org/10.1007/s12011-022-03402-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03402-4

Keywords

Navigation