Skip to main content
Log in

Developmental changes affected by Mn deficiency

Mn-Superoxide dismutase, CuZn-Superoxide dismutase, Mn, Cu, Fe, and Zn in mouse tissues

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The changes in tissue Mn, Cu, Fe, Zn, and Superoxide dismutase (SOD) activity were studied in control and Mn-deficient mice during postnatal development. Mn levels were lower in tissues from Mn-deficient mice than in controls throughout development. By day 60, Mn concentration in tissues from Mn-deficient mice was at least 70% lower than that of controls. Cu levels in the two groups did not differ appreciably. Liver Cu concentration was highest at day 5, then decreased. Heart and kidney Cu increased throughout development. Fe concentration in heart and liver was similar in both groups at 1, 5, and 20 days of age, but at day 60, kidney Fe in the Mn-deficient mice was 40% higher than in controls. The developmental pattern for MnSOD activity paralleled that of Mn concentration. At day 5, there were no differences in MnSOD activity between control and deficient mice. By day 60, MnSOD activity in most tissues was at least 50% lower than that of controls, possibly increasing the susceptibility of the Mn deficient animal to oxidative damage.

These developmental patterns should help investigators to determine the tissues and time periods in which to study trace element metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.L. Keen, B. Lönnerdal, and L. S. Hurley, inBiochemistry of the Essential Ultra-Trace Elements, E. Frieden, ed., Plenum, New York, 1984, pp.89–132.

    Google Scholar 

  2. L. S. Hurley,Physiol. Rev. 61, 249 (1981).

    PubMed  CAS  Google Scholar 

  3. I. Fridovich,Ann. Rev. Biochem. 44, 147 (1975).

    Article  PubMed  CAS  Google Scholar 

  4. W. Bohnenkamp and U. Weser, inSuperoxide and Superoxide Dismutases, A. M. Michelson, J. M. McCord, and I. Fridovich, ed., Academic Press, New York, 1977, pp. 387–394.

    Google Scholar 

  5. D. L. Paynter,J. Nutr. 110, 437 (1980).

    PubMed  CAS  Google Scholar 

  6. D. M. Williams, R. E. Lynch, G. R. Lee, and G. E. Cartwright,Proc. Soc. Exp. Med. 149, 534 (1975).

    CAS  Google Scholar 

  7. S. Zidenberg-Cherr, C. L. Keen, B. Lönnerdal, and L. S. Hurley,J. Nutr. 113, 2498 (1983).

    PubMed  CAS  Google Scholar 

  8. G. de Rosa, C. L. Keen, R. M. Leach, and L. S. Hurley,J. Nutr. 110, 795 (1980).

    PubMed  Google Scholar 

  9. D. I. Paynter,Biol. Trace. Element Res. 3, 121 (1980).

    Article  Google Scholar 

  10. S. Zidenberg-Cherr, C. L. Keen, and L. S.Hurley,Biol. Trace Element Res. 7, 31 (1985)

    Article  CAS  Google Scholar 

  11. O. Greengard,Assays Biochem. 7, 159 (1971).

    CAS  Google Scholar 

  12. S. Marklund and G. Marklund,Eur. J. Biochem. 41, 469 (1974).

    Article  Google Scholar 

  13. M. S. Clegg, C. L. Keen, B. Lönnerdal, and L. S. Hurley,Biol. Trace Element Res. 3, 107 (1981).

    Article  CAS  Google Scholar 

  14. M. S. Clegg, C. L. Keen, B. Lönnerdal, and L. S. Hurley,Biol. Trace Element Res. 4, 145 (1982).

    Article  CAS  Google Scholar 

  15. A. R. Kemmerer, C. A. Elvehjem, and E. B. Hart,J. Biol. Chem. 92, 623 (1931).

    CAS  Google Scholar 

  16. L. T. Bell and L. S. Hurley,Lab. Invest. 29, 723 (1973).

    CAS  Google Scholar 

  17. C. L. Keen and L. S. Hurley,Mechanisms of Aging and Development 13, 161 (1980).

    Article  CAS  Google Scholar 

  18. C. H. Hill and G. Matrone,Fed. Proc. 29, 1474 (1970).

    PubMed  CAS  Google Scholar 

  19. H. W. Wilgus and A. R. Patton,J. Nutr. 18, 35 (1939).

    CAS  Google Scholar 

  20. C. J. Dillard, V. C. Gavino, and A. L. Tappel,J. Nutr. 113, 2266 (1983).

    PubMed  CAS  Google Scholar 

  21. T. Yoshioka, K. Utsunio, and K. Sekiba,Biol. Neonate 32, 147 (1977).

    Article  PubMed  CAS  Google Scholar 

  22. V. Z. Lankin, A. K. Tikhaze, V. V. Lemeshko, K. Shermatov, L. A. Kaliman, and A. M. Vikhert,Translated from Byulleten Eksperimental noi Biologii i Meditsiny 92, 310 (1981).

    CAS  Google Scholar 

  23. I. Mavelli, A. Rigo, R. Federico, M. Ciriolo, and G. Rotilio,Biochem. J. 204, 535 (1982).

    PubMed  CAS  Google Scholar 

  24. D. L. Baly, C. L. Keen, and L. S. Hurley,J. Nutr. (in press).

  25. M. R. Bristow, M. E. Billingham, J. W. Mason, and J. R. Daniels,Cancer Treat. Rep. 62, 873 (1978).

    PubMed  CAS  Google Scholar 

  26. R. Ogura, H. Toyama, T. Shimada, and M. Murakami,J. Appl. Biochem. 1, 325 (1979).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zidenberg-Cherr, S., Keen, C.L., Casey, S.M. et al. Developmental changes affected by Mn deficiency. Biol Trace Elem Res 7, 209–222 (1985). https://doi.org/10.1007/BF02989247

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02989247

Index Entries

Navigation