Skip to main content
Log in

Neonatal, maternal, and intrapartum factors and their relationship to cord-and maternal-plasma trace-element concentration

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The study was carried out to examine the relationship of neonatal sex, birthweight, maternal parity, hemoglobin status, gestational age at term, and duration of labor to cord- and maternal-plasma zinc, copper, and iron levels, measured by atomic absorption spectrophotometry. Significant differences were observed between maternal-and neonatal-cord plasma concentrations of the different trace elements at term. Maternal parity had no significant influence on the distribution of plasma trace elements, except in the case of maternal plasma iron levels. However, maternal hemoglobin status was observed as an important covariate of maternal zinc and iron levels at term. Neonatal birthweight was observed to be an index of maternal plasma zinc status at term. On the other hand, although gestational age at term had no significant influence on maternal-plasma trace-element concentrations, it was observed to influence neonatal-cord plasma levels. Long durations of labor (≥18 h) were associated with relatively lower, but not significant, maternal-plasma iron levels, whereas neonatal-cord-plasma iron levels seemed to show sex differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Dixon, and M. B. Brown, eds.,BMDP — Biomedical Computer Programs P-Series, University of California, Berkeley, CA (1979).

    Google Scholar 

  2. L. S. Hurley, inTrace Elements in Human Health and Disease, vol. II, A. S. Prasad, ed., Academic, NY (1976).

    Google Scholar 

  3. E. J. Underwood, 2nd Ed. Academic, NY (1971).

  4. T. Atinmo, C. Mbofung, and B. O. Osinusi,Int. J. Gynaecol. Obstet. 18, 452 (1980).

    PubMed  CAS  Google Scholar 

  5. J. D. Bogden, I. S. Third, D. B. Louria, and H. Caterini,Am. J. Clin. Nut. 31, 1181 (1978).

    CAS  Google Scholar 

  6. D. L. Woods, A. F. Malan, and D. H. Van Schalkwyk,S. Afr. Med. J. 59, 756 (1981).

    PubMed  CAS  Google Scholar 

  7. J. F. Wilson and M. E. Lahey,Pediatrics 25, 40 (1960).

    PubMed  CAS  Google Scholar 

  8. E. M. Widdowson, inMineral Metabolism in Pediatrics, D. Barltrop and W. L. Burland, eds., Oxford, Blackwell, P. 93, (1969).

    Google Scholar 

  9. H. G. Petering, D. W. Yeager, and S. O. Witherup,Arch. Environ. Health 23, 202 (1971).

    PubMed  CAS  Google Scholar 

  10. G. P. Butrimovitz, Ph.D Thesis, University of Maryland (Ph.D Chemistry, analytical) (1977).

  11. R. S. Gibson and M. S. Dewolfe,Am. J. Clin. Nutr. 32, 1728 (1979).

    PubMed  CAS  Google Scholar 

  12. J. Apgar,J. Nutr. 102, 343 (1972).

    PubMed  CAS  Google Scholar 

  13. S. Jameson,Acta. Med. Scan. Suppl. 593, (1976).

  14. E. C. Zaino,Atomic Absorp. Newslett. 6, 93 (1967).

    CAS  Google Scholar 

  15. International Committee for Haematology of the European Society of Haematology,J. Clin. Pathol. 18, 353 (1965).

    Article  Google Scholar 

  16. I. C. Mepherson and J. W. Everard,Clin. Chimie Acta 37, 117 (1972).

    Article  Google Scholar 

  17. D. B. Jelliffe,Monograph Series No. 53 WHO Geneva (1966).

  18. J. A. Halsted, B. M. Hackley, and J. C. Smith,Lancet,2, 278 (1968).

    Article  PubMed  CAS  Google Scholar 

  19. J. Puolakka, O. Janne, and R. Vihko,Acta Obstet. Gynecol Scan. Suppl 95, 53 (1980).

    Article  CAS  Google Scholar 

  20. R. Batay,Br. J. Haematol. 38, 427 (1978).

    Article  Google Scholar 

  21. S. R. Glasser, C. Wright, and R. M. Hayssel,Am. J. Physiol. 215, 205 (1968).

    PubMed  CAS  Google Scholar 

  22. H. H. Sandstead, S. R. Glasser, and D. D. Gillespie,Fed. Proc. Fed. Am. Soc. Exp. Biol. 29, 297 (abstr. No. 295).

  23. W. M. Crosby, J. Metcoff, J. P. Costiloe, M. Mameesh, H. N. Sandstead, R. A. Jacob, P. F. McClain, G. Jacobson, W. Reid, and G. Burns,Am. J. Obst. Gynecol. 128, 23 (1977).

    Google Scholar 

  24. A. M. Kelly, D. J. Macdonald, and A. N. McDougull,Br. J. Obst. Gynaecol. 85, 338 (1978).

    CAS  Google Scholar 

  25. I. Shulman,J. Am. Med. Assn. 175, 118 (1961).

    Google Scholar 

  26. A. M. Akinkugbe,Nig. Med. J. 8, (4) 31 (1978).

    Google Scholar 

  27. T. Atinmo, A. Johnson, C. Mbofung, and G. Timendibwa,Acta Trop. 39, 265 (1982).

    PubMed  CAS  Google Scholar 

  28. F. F. Cherry, E. A. Bennett, G. S. Bazzano, K. Johnson, G. J. Fosmire, and H. K. Batson,Am. J. Clin. Nutr. 34, 2367 (1981).

    PubMed  CAS  Google Scholar 

  29. M. Abdulla and B. Haeger-AronsenEnzyme 12, 708 (1971).

    PubMed  CAS  Google Scholar 

  30. P. A. Walravens and K. M. Hambidge,Am. J. Clin. Nutr. 29, 1114 (1976).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mbofung, C.M.F., Atinmo, T. & Omololu, A. Neonatal, maternal, and intrapartum factors and their relationship to cord-and maternal-plasma trace-element concentration. Biol Trace Elem Res 9, 209–219 (1986). https://doi.org/10.1007/BF02988820

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02988820

Index Entries

Navigation