Skip to main content
Log in

Alternating myocardial sympathetic neural function of athlete's heart in professional cycle racers examined with iodine-123-MIBG myocardial scintigraphy

  • Original Articles
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Myocardial sympathetic neural function in professional athletes who had the long-term tremendous cardiac load has not been fully investigated by myocardial iodine-123-metaiodobenzylguanidine (MIBG) uptake in comparison with power spectral analysis (PSA) in electrocardiography. Eleven male professional cycle racers and age-matched 11 male healthy volunteers were enrolled in this study. The low frequency components in the power spectral density (LF), the high frequency components in the power spectral density (HF), the LF/HF ratio and mean R-R interval were derived from PSA and time-domain analysis of heart rate variability in electrocardiography. The mean heart-to-mediastinum uptake ratio (H/M ratio) of the MIBG uptake, in professional cycle racers was significantly lower than that in healthy volunteers (p<0.01) and HF power in professional cycle racers was significantly higher than that in healthy volunteers (p<0.05). In the group of professional cycle racers, the H/M ratio showed a significant correlation with the R-R interval, as indices of parasympathetic nerve activity (r=0.80, p<0.01), but not with the LF/HF ratio as an index of sympathetic nerve activity. These results may indicate that parasympathetic nerve activity has an effect on MIBG uptake in a cyclist's heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dae MW, Herre JM, O'Connell JW, Botvinick EH, Newman D, Munoz L. Scintigraphic assessment of sympathetic innervation after transmural versus non transmural myocardial infarction.J Am Coll Cardiol 1991; 17: 1416–1423.

    PubMed  CAS  Google Scholar 

  2. Dae MW, De Marco T, Botvinick EH, O'Connel JW, Hattner RS, Huberty JP, et al. Scintigraphic assessment of MIBG uptake in globally denervated human and canine hearts: Implications for clinical studies.J Nucl Med 1992; 33: 1444–1450.

    PubMed  CAS  Google Scholar 

  3. Shimizu M, Sugihara N, Kita Y, Shimizu K, Horita Y, Nakajima K, et al. Long tern course and cardiac sympathetic nerve activity in patients with hypertrophic cardiomyopathy.Br Heart J 1992; 67: 155–160.

    Article  PubMed  CAS  Google Scholar 

  4. Henderson EB, Kahn JK, Corbett JR, Jansen DE, Pippin JJ, Kulkarni P, et al. Abnormal I-123 metaiodobenzylguanidine myocardial washout and distribution may reflect myocardial adrenergic derangement in patients with congestive cardiomyopathy.Circulation 1988; 78: 1192–1199.

    PubMed  CAS  Google Scholar 

  5. Yamakado K, Takeda K, Kitano T, Nakagawa T, Futagami Y, Konishi T, et al. Serial change of iodine-123-metaiodobenzylguanidine myocardial concentration in patients with dilated cardiomyopathy.Eur J Nucl Med 1992; 19: 265–270.

    Article  PubMed  CAS  Google Scholar 

  6. Morozumi T, Kusuoka H, Fukuchi K, Tani A, Uehara T, Matsuda S, et al. Myocardial iodine-123-metaiodobenzylguanidine images and autonomic nerve activity in normal subjects.J Nucl Med 1997; 38: 49–52.

    PubMed  CAS  Google Scholar 

  7. Somsen GA, Szabo BM, Veldhuisen DJ, de Milliano PAR, de Groot CA, Lie KI. Comparison between Iodine 123 metaiodobenzylguanidine scintigraphy and heart rate variability for the assessment of cardiac sympathetic activity in mild to moderate heart failure.Am Heart J 1997; 134: 456–458.

    Article  PubMed  CAS  Google Scholar 

  8. Maron BJ. Structural features of the athlete heart as defined by echocardiography.J Am Coll Cardiol 1986; 7: 190–203.

    PubMed  CAS  Google Scholar 

  9. Devereux RB, Reichek N. Echocardiographic determination of left ventricular mass in man: Anatomic validation of the method.Circulation 1977; 55: 613–618.

    PubMed  CAS  Google Scholar 

  10. Rost R, Hollmann W. Athlete's heart—A review of its historical assessment and new aspects.Int J Sports Med 1983; 4: 147–165.

    Article  PubMed  CAS  Google Scholar 

  11. Kline R, Swanson DP, Wieland DM, Thrall JH, Gross MD, Pitt B, et al. Myocardial imaging in man with I-123 metaiodobenzylguanidine.J Nucl Med 1981; 22: 129–132.

    PubMed  CAS  Google Scholar 

  12. Nakajo M, Shapiro B, Copp J, Kalff V, Gross MD, Sisson JC, et al. The normal and abnormal distribution of the adrenomedullary imaging agent m-[I-131] iodobenzylguanidine (I-131 MIBG) in man: Evaluation by scintigraphy.J Nucl Med 1983; 24: 672–682.

    PubMed  CAS  Google Scholar 

  13. Sisson JC, Wieland DM, Shermann P, Mangner TJ, Tobes MC, Jacques S. Metaiodobenzylguanidine as an index of the adrenergic nervous system integrity and function.J Nucl Med 1987; 28: 1620–1624.

    PubMed  CAS  Google Scholar 

  14. Schofer J, Spielmann R, Schuchert A, Weber K, Schluter M. Iodine-123 meta-iodobenzylguanidine scintigraphy: A noninvasive method to demonstrate myocardial adrenergic nervous system disintegrity in patients with idiopathic dilated cardiomyopathy.J Am Coll Cardiol 1988; 12: 1252–1258.

    Article  PubMed  CAS  Google Scholar 

  15. Suga K, Tsukamoto K, Nishigauchi K, Kume N, Matsunaga N, Hayano T, et al. Iodine-123-MIBG imaging in pheochromocytoma with cardiomyopathy and pulmonary edema.J Nucl Med 1996; 37: 1361–1364.

    PubMed  CAS  Google Scholar 

  16. Fujiwara Y, Hamada M, Shigematu Y, Sumimoto T, Hamamoto K, Hiwada K. Scintigraphic assessment of cardiac adrenergic innervation in patients with essential hypertension.J Cardiovasc Pharmacol 1991; 17 (suppl 2): S148-S150.

    Article  PubMed  Google Scholar 

  17. Morimoto S, Terada K, Keira N, Satoda M, Inoue K, Tatsukawa H, et al. Investigation of the relationship between regression of hypertensive cardiac hypertrophy and improvement of cardiac sympathetic nervous dysfunction using iodine-123 metaiodobenzylguanidine myocardial imaging.Eur J Nucl Med 1996; 23: 756–761.

    Article  PubMed  CAS  Google Scholar 

  18. Levy MN, Martin PJ. Neural control of the heart. In: Sperelakis N, ed.Physiology and Pathophysiology of the Heart. Boston; Martin Nijihoff, 1984: 337–354.

    Google Scholar 

  19. Braunwald E, Sonnenblick EH, Ross J. Mechanisms of cardiac contraction and relaxation. In: Braunwald E, ed.Heart Disease, 4th ed. Philadelphia; WB Saunders, 1992: 351–386.

    Google Scholar 

  20. Matko I, Feher E, Vizi ES. Receptor mediated presynaptic modulation of the release of noradrenaline in human papillary muscle.Cardiovascular Research 1994; 28: 700–704.

    Article  PubMed  CAS  Google Scholar 

  21. Malik M. Heart Rate Variability.Circulation 1996; 93: 1043–1065.

    Google Scholar 

  22. Pluim BM, Swenne CA, Zwinderman AH, Maan AC, Laarse A, Doornbos J, et al. Correlation of heart rate variability with cardiac functional and metabolic variables in cyclists with training induced left ventricular hypertrophy.Heart 1999; 81: 612–617.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Koyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koyama, K., Inoue, T., Hasegawa, A. et al. Alternating myocardial sympathetic neural function of athlete's heart in professional cycle racers examined with iodine-123-MIBG myocardial scintigraphy. Ann Nucl Med 15, 307–312 (2001). https://doi.org/10.1007/BF02988236

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02988236

Key words

Navigation