Skip to main content

General Principles of [123I]-MIBG Scintigraphy for the Assessment of the Cardiac Sympathetic Activity: From Planar to SPECT

  • Chapter
  • First Online:
Autonomic Innervation of the Heart

Abstract

In patients with heart failure, increased sympathetic activity and cardiac sympathetic dysfunction are present and are related to an unfavorable outcome. In recent years, large-scale clinical trials have documented the benefits of pharmacological therapies aimed at limiting left ventricular remodeling and even reversing this process. These beneficial effects were associated with an increase in myocardial uptake of [123I]-metaiodobenzylguanidine (MIBG), a radiolabeled norepinephrine analog. However, despite the large number of published studies on cardiac [123I]-MIBG imaging, methodological and analytical limitations have interfered with the unequivocal interpretation of the imaging data. In this chapter, the assessment of myocardial sympathetic innervation with [123I]-MIBG is discussed with emphasis on patient preparation, image acquisition, and analysis. Special attention is given to overcoming the aforementioned possible methodological and analytical limitations. In conclusion, improving the standardization and validation of [123I]-MIBG myocardial scintigraphy and thus reducing variations in obtained results will lead to much more accepted application of the findings to clinical patient management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CHF:

Chronic heart failure

DAT:

Dopamine transporter

EANM:

European Association of Nuclear Medicine

EMT:

Extraneuronal monoamine transporters

H/M ratio:

Heart-to-mediastinum ratio

ICD:

Implantable cardioverter defibrillator

JCS:

Japanese Circulation Society

JSNM:

Japanese Society of Nuclear Medicine

LE:

Low energy

LEHR:

Low energy, high resolution

ME:

Medium energy

MIBG:

Metaiodobenzylguanidine

NET:

Norepinephrine transporter

OCT:

Organic cation transporters

ROI(s):

Region(s) of interest

SCD:

Sudden cardiac death

SLC:

Solute carrier transporters

SPECT:

Single-photon emission computed tomography

References

  • Aaronson KD, Schwartz JS, Chen TM et al (1997) Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation 95:2660–2667

    Article  CAS  PubMed  Google Scholar 

  • Agostini D, Verberne HJ, Burchert W et al (2008) I-123- m IBG myocardial imaging for assessment of risk for a major cardiac event in heart failure patients: insights from a retrospective European multicenter study. Eur J Nucl Med Mol Imaging 35:535–546

    Article  PubMed  Google Scholar 

  • Arora R, Ferrick KJ, Nakata T et al (2003) I-123 MIBG imaging and heart rate variability analysis to predict the need for an implantable cardioverter defibrillator. J Nucl Cardiol 10:121–131

    Article  PubMed  Google Scholar 

  • Bonow RO, Bennett S, Casey DE Jr et al (2005) ACC/AHA clinical performance measures for adults with chronic heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Performance Measures (Writing Committee to Develop Heart Failure Clinical Performance Measures) endorsed by the Heart Failure Society of America. J Am Coll Cardiol 46:1144–1178

    Article  PubMed  Google Scholar 

  • Boogers MJ, Borleffs CJ, Henneman MM et al (2010) Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol 55:2769–2777

    Article  PubMed  Google Scholar 

  • Burckhardt G, Wolff NA (2000) Structure of renal organic anion and cation transporters. Am J Physiol Renal Physiol 278:F853–F866

    CAS  PubMed  Google Scholar 

  • Chen NH, Reith ME, Quick MW (2004) Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch 447:519–531

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Solal A, Esanu Y, Logeart D et al (1999) Cardiac metaiodobenzylguanidine uptake in patients with moderate chronic heart failure: relationship with peak oxygen uptake and prognosis. J Am Coll Cardiol 33:759–766

    Article  CAS  PubMed  Google Scholar 

  • Dae MW, O'Connell JW, Botvinick EH et al (1989) Scintigraphic assessment of regional cardiac adrenergic innervation. Circulation 79:634–644

    Article  CAS  PubMed  Google Scholar 

  • DeGrado TR, Zalutsky MR, Vaidyanathan G (1995) Uptake mechanisms of meta-[123I]iodobenzylguanidine in isolated rat heart. Nucl Med Biol 22:1–12

    Article  CAS  PubMed  Google Scholar 

  • Dobbeleir AA, Hambye AS, Franken PR (1999) Influence of high-energy photons on the spectrum of iodine-123 with low- and medium-energy collimators: consequences for imaging with 123I-labelled compounds in clinical practice. Eur J Nucl Med 26:655–658

    Article  CAS  PubMed  Google Scholar 

  • Eisenhofer G (2001) The role of neuronal and extraneuronal plasma membrane transporters in the inactivation of peripheral catecholamines. Pharmacol Ther 91:35–62

    Article  CAS  PubMed  Google Scholar 

  • Fagret D, Wolf JE, Vanzetto G et al (1993) Myocardial uptake of metaiodobenzylguanidine in patients with left ventricular hypertrophy secondary to valvular aortic stenosis. J Nucl Med 34:57–60

    CAS  PubMed  Google Scholar 

  • Flack JM, Neaton JD, Daniels B et al (1993) Ethnicity and renal disease: lessons from the Multiple Risk Factor Intervention Trial and the Treatment of Mild Hypertension Study. Am J Kidney Dis 21:31–40

    Article  CAS  PubMed  Google Scholar 

  • Flotats A, Carrio I, Agostini D et al (2010) Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging 37:1802–1812

    Article  PubMed  Google Scholar 

  • Geis WP, Kaye MP (1968) Distribution of sympathetic fibers in the left ventricular epicardial plexus of the dog. Circ Res 23:165–170

    Article  CAS  PubMed  Google Scholar 

  • Grundemann D, Schechinger B, Rappold GA et al (1998) Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter. Nat Neurosci 1:349–351

    Article  CAS  PubMed  Google Scholar 

  • Hunt SA (2005) ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). J Am Coll Cardiol 46:e1–e82

    Article  PubMed  Google Scholar 

  • ICRP (1987) Radiation dose to patients from radiopharmaceuticals. A report of a Task Group of Committee 2 of the International Commission on Radiological Protection. Ann ICRP 18:1–377

    Article  Google Scholar 

  • Inoue Y, Suzuki A, Shirouzu I et al (2003) Effect of collimator choice on quantitative assessment of cardiac iodine 123 MIBG uptake. J Nucl Cardiol 10:623–632

    Article  PubMed  Google Scholar 

  • Iversen LL (1965) The uptake of catecholamines at high perfusion concentrations in the rat isolated heart: a novel catecholamine uptake process. Br J Pharmac Chemother 25:18–33

    Article  CAS  Google Scholar 

  • Jacobson AF, Senior R, Cerqueira MD et al (2010) Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 55:2212–2221

    Article  PubMed  Google Scholar 

  • Jaques S Jr, Tobes MC, Sisson JC et al (1984) Comparison of the sodium dependency of uptake of meta-lodobenzylguanidine and norepinephrine into cultured bovine adrenomedullary cells. Mol Pharmacol 26:539–546

    CAS  PubMed  Google Scholar 

  • JCS Joint Working Group (2012) Guidelines for clinical use of cardiac nuclear medicine (JCS 2010). Circ J 76:761–767

    Article  Google Scholar 

  • Kasama S, Toyama T, Kumakura H et al (2002) Spironolactone improves cardiac sympathetic nerve activity and symptoms in patients with congestive heart failure. J Nucl Med 43:1279–1285

    CAS  PubMed  Google Scholar 

  • Kline RC, Swanson DP, Wieland DM et al (1981) Myocardial imaging in man with I-123 meta-iodobenzylguanidine. J Nucl Med 22:129–132

    CAS  PubMed  Google Scholar 

  • Koepsell H, Endou H (2004) The SLC22 drug transporter family. Pflugers Arch 447:666–676

    Article  CAS  PubMed  Google Scholar 

  • Kyuma M, Nakata T, Hashimoto A et al (2004) Incremental prognostic implications of brain natriuretic peptide, cardiac sympathetic nerve innervation, and noncardiac disorders in patients with heart failure. J Nucl Med 45:155–163

    CAS  PubMed  Google Scholar 

  • Matsuo S, Nakajima K, Yamashina S et al (2009) Characterization of Japanese standards for myocardial sympathetic and metabolic imaging in comparison with perfusion imaging. Ann Nucl Med 23:517–522

    Article  PubMed  Google Scholar 

  • Merlet P, Valette H, Dubois-Rande JL et al (1992) Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med 33:471–477

    CAS  PubMed  Google Scholar 

  • Merlet P, Benvenuti C, Moyse D et al (1999) Prognostic value of MIBG imaging in idiopathic dilated cardiomyopathy. J Nucl Med 40:917–923

    CAS  PubMed  Google Scholar 

  • Minisi AJ, Thames MD (1993) Distribution of left ventricular sympathetic afferents demonstrated by reflex responses to transmural myocardial ischemia and to intracoronary and epicardial bradykinin. Circulation 87:240–246

    Article  CAS  PubMed  Google Scholar 

  • Momose M, Kobayashi H, Iguchi N et al (1999) Comparison of parameters of 123I-MIBG scintigraphy for predicting prognosis in patients with dilated cardiomyopathy. Nucl Med Commun 20:529–535

    Article  CAS  PubMed  Google Scholar 

  • Morozumi T, Kusuoka H, Fukuchi K et al (1997) Myocardial iodine-123-metaiodobenzylguanidine images and autonomic nerve activity in normal subjects. J Nucl Med 38:49–52

    CAS  PubMed  Google Scholar 

  • Nakata T, Wakabayashi T, Kyuma M et al (2005) Cardiac metaiodobenzylguanidine activity can predict the long-term efficacy of angiotensin-converting enzyme inhibitors and/or beta-adrenoceptor blockers in patients with heart failure. Eur J Nucl Med Mol Imaging 32:186–194

    Article  CAS  PubMed  Google Scholar 

  • Nieminen MS, Bohm M, Cowie MR et al (2005) Executive summary of the guidelines on the diagnosis and treatment of acute heart failure: the Task Force on Acute Heart Failure of the European Society of Cardiology. Eur Heart J 26:384–416

    Article  PubMed  Google Scholar 

  • Patel AD, Iskandrian AE (2002) MIBG imaging. J Nucl Cardiol 9:75–94

    Article  PubMed  Google Scholar 

  • Paul M, Schafers M, Kies P et al (2006) Impact of sympathetic innervation on recurrent life-threatening arrhythmias in the follow-up of patients with idiopathic ventricular fibrillation. Eur J Nucl Med Mol Imaging 33:866–870

    Article  PubMed  Google Scholar 

  • Rabinovitch MA, Rose CP, Schwab AJ et al (1993) A method of dynamic analysis of iodine-123-metaiodobenzylguanidine scintigrams in cardiac mechanical overload hypertrophy and failure. J Nucl Med 34:589–600

    CAS  PubMed  Google Scholar 

  • Radford MJ, Arnold JM, Bennett SJ et al (2005) ACC/AHA key data elements and definitions for measuring the clinical management and outcomes of patients with chronic heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Heart Failure Clinical Data Standards): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Failure Society of America. Circulation 112:1888–1916

    Article  PubMed  Google Scholar 

  • Short JH, Darby TD (1967) Sympathetic nervous system blocking agents. 3. Derivatives of benzylguanidine. J Med Chem 10:833–840

    Article  CAS  PubMed  Google Scholar 

  • Sisson JC, Frager MS, Valk TW et al (1981) Scintigraphic localization of pheochromocytoma. N Engl J Med 305:12–17

    Article  CAS  PubMed  Google Scholar 

  • Sisson JC, Shapiro B, Meyers L et al (1987a) Metaiodobenzylguanidine to map scintigraphically the adrenergic nervous system in man. J Nucl Med 28:1625–1636

    CAS  PubMed  Google Scholar 

  • Sisson JC, Wieland DM, Sherman P et al (1987b) Metaiodobenzylguanidine as an index of the adrenergic nervous system integrity and function. J Nucl Med 28:1620–1624

    CAS  PubMed  Google Scholar 

  • Solanki KK, Bomanji J, Moyes J et al (1992) A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun 13:513–521

    Article  CAS  PubMed  Google Scholar 

  • Somsen GA, Borm JJ, Dubois EA et al (1996) Cardiac 123I-MIBG uptake is affected by variable uptake in reference regions: implications for interpretation in clinical studies. Nucl Med Commun 17:872–876

    Article  CAS  PubMed  Google Scholar 

  • Swedberg K, Cleland J, Dargie H et al (2005) Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005): The Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology. Eur Heart J 26:1115–1140

    Article  PubMed  Google Scholar 

  • Veltman CE, Boogers MJ, Meinardi JE et al (2012) Reproducibility of planar (123)I-meta-iodobenzylguanidine (MIBG) myocardial scintigraphy in patients with heart failure. Eur J Nucl Med Mol Imaging 39:1599–1608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verberne HJ, Feenstra C, de Jong WM et al (2005) Influence of collimator choice and simulated clinical conditions on 123I-MIBG heart/mediastinum ratios: a phantom study. Eur J Nucl Med Mol Imaging 32:1100–1107

    Article  PubMed  Google Scholar 

  • Verberne HJ, Brewster LM, Somsen GA et al (2008) Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J 29:1147–1159

    Article  PubMed  Google Scholar 

  • Verberne HJ, Verschure DO, Somsen GA et al (2011) Vascular time-activity variation in patients undergoing 123I-MIBG myocardial scintigraphy: implications for quantification of cardiac and mediastinal uptake. Eur J Nucl Med Mol Imaging 38:1132–1138

    Article  PubMed  Google Scholar 

  • Verschure DO, Somsen GA, van Eck-Smit BL et al (2012) Renal function in relation to cardiac (123)I-MIBG scintigraphy in patients with chronic heart failure. Int J Mol Imaging. doi:10.1155/2012/434790

    PubMed Central  PubMed  Google Scholar 

  • Wafelman AR, Hoefnagel CA, Maes RA et al (1994) Radioiodinated metaiodobenzylguanidine: a review of its biodistribution and pharmacokinetics, drug interactions, cytotoxicity and dosimetry. Eur J Nucl Med 21:545–559

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi T, Nakata T, Hashimoto A et al (2001) Assessment of underlying etiology and cardiac sympathetic innervation to identify patients at high risk of cardiac death. J Nucl Med 42:1757–1767

    CAS  PubMed  Google Scholar 

  • Wieland DM, Wu J, Brown LE et al (1980) Radiolabeled adrenergic neuron-blocking agents: adrenomedullary imaging with [131I]iodobenzylguanidine. J Nucl Med 21:349–353

    CAS  PubMed  Google Scholar 

  • Wu X, Kekuda R, Huang W et al (1998) Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem 273:32776–32786

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Shimonagata T, Fukunami M et al (2003) Comparison of the prognostic value of cardiac iodine-123 metaiodobenzylguanidine imaging and heart rate variability in patients with chronic heart failure: a prospective study. J Am Coll Cardiol 41:231–238

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hein J. Verberne MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Verberne, H.J., Scholte, A.J.H.A. (2015). General Principles of [123I]-MIBG Scintigraphy for the Assessment of the Cardiac Sympathetic Activity: From Planar to SPECT. In: Slart, R., Tio, R., Elsinga, P., Schwaiger, M. (eds) Autonomic Innervation of the Heart. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45074-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45074-1_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45073-4

  • Online ISBN: 978-3-662-45074-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics