Skip to main content
Log in

Mapping of trace metals in urban soils

The example of mühlburg/Karlsruhe, Germany

  • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Spatial distribution maps depicting the concentrations of antimony, lead, tin, copper and zinc, and the presence of land-use units were generated for Mühlburg, a district of the City of Karlsruhe, Germany. The influence of the spatial land-use structure on the distributions of the element concentrations is statistically evaluated and discussed. The variography for Mühlburg shows an average range of 200-400 m for the spatial correlations of Sb, Pb, Sn and Zn. The variograms of Pb and Zn are characterised by hole effects at 300 m distances, i.e. the result of repeated stronger spatial correlations for certain distances between the sample sites. Most probably, this is an effect of the typical urban structure of streets, buildings, green spaces, and industry. Kriging method was used for the interpolation of Sb, Pb, Sn and Zn concentrations. Only Cu does not show a spatial correlation. In this case, the interpolation was carried out with a smoothed triangulation routine. Pollution plumes of point sources such as lead works, a bell foundry and a coal-fired thermal power station superimpose the more diffuse pollution from traffic, household heating processes, waste material disposal, etc. The trace element concentrations in soils of housing areas increase with the age of the developed area. Industrial areas show the highest level of pollution, followed by housing areas developed before 1920, traffic areas, allotments, housing areas developed between 1920 and 1980, parks and sports areas, cemetery and housing areas developed after 1980.

It is demonstrated that spatial distribution maps of element concentrations indicate potential emission sources of harmful substances, even if the emission itself or the direct surrounding soil have not been analysed. The analytical tools presented enable town planners to discern areas of higher soil pollution. Detailed investigations can be focussed on these areas to evaluate the possibilities of soil usage and transfer. These methods enable one to manage urban soil in an adequate manner. For these reasons, the methods demonstrated support an urban environmental impact assessment and are a part of a sustainable urban soil management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akin H, Siemes H (1988): Praktische Geostatistik. Springer Verlag, Berlin

    Google Scholar 

  • Alloway BJ (ed) (1999): Schwermetalle in Böden. Springer Verlag, Berlin

    Google Scholar 

  • Arbeitskreis Stadtböden (ed) (1996): Urbaner Bodenschutz. Arbeitskreis Stadtböden der Deutschen Bodenkundlichen Gesellschaft. Springer Verlag, Berlin

    Google Scholar 

  • Armstrong M (1998): Basic linear geostatistics. Springer Verlag, Berlin

    Google Scholar 

  • Bahr H-P, Vögtle T (eds) (1991): Digitale Bildverarbeitung -Anwendung in Photogrammetrie, Kartographie und Fernerkundung.

  • Herbert Wichmann Verlag, Karlsruhe Belicic T, Raschke N (1999): Die Schadstoffbelastung in Nürnberger Stadtböden. Wasser und Boden 51/1+2: 44–48

  • Bloemen M-L, Markert B, Lieth H (1995): The distribution of Cd, Cu, Pb and Zn in topsoils of Osnabrück in relation to land use. The Science of the Total Environment 166: 137–148

    Article  CAS  Google Scholar 

  • Bluhm M, Reinirkens P (1996): Digitale Bodenbelastungskarten. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 80: 137–140

    Google Scholar 

  • Blume H-P (1993): Böden. In: Sukopp H, Wittig R (eds): Stadtökologie: 154–171. Stuttgart, Gustav Fischer Verlag

    Google Scholar 

  • Blume H-P, Schleuß U (eds) (1997): Bewertung anthropogener Stadtböden. Schriftenreihe d Inst f Pflanzernährung u Bodenkunde Nr 38, Universität Kiel

  • Bridges EM (1991): Waste materials in urban soils. In: Bullock P, Gregory PJ (eds): Soils in their urban environment: 28–46. Oxford, Blackwell Scientific Publications

    Google Scholar 

  • Brookins DG (1998): Eh-pH diagrams for geochemistry. Springer Verlag, Berlin

    Google Scholar 

  • Bullock P, PJ Gregory (eds) (1991): Soils in the urban environment. Blackwell Scientific Publications, London

    Google Scholar 

  • Burghardt W (1994): Soils in urban and industrial environments. Z Pflanzenernähr Bodenk 157: 205–214

    Article  CAS  Google Scholar 

  • Chamber JM, Cleveland WS, Kleiner B, Tukey PA (1983): Graphical methods for data analysis. Wadsworth and Brooks/Cole Publishing Company. Pacific Frove, California

    Google Scholar 

  • Cionco RM, Ellefsen R (1998): High resolution urban morphology data for urban wind flow modeling. Atmospheric Environment 32 (1): 7–17

    Article  CAS  Google Scholar 

  • Davies BE (1999): Blei. In: Alloway BJ (ed) (1999): Schwermetalle in Böden: 131–149. Springer Verlag, Berlin

    Google Scholar 

  • Edwards R, Lepp NW, KC Jones (1999): Weniger häufig vorkommende Elemente mit potentieller Bedeutung für die Umwelt. In: Alloway BJ (ed): Schwermetalle in Böden. Springer Verlag, Berlin

    Google Scholar 

  • Ewers U, Schlipköter H-W (1991): Lead. In: Merian E (ed): Metals and their compounds in the environment: 971–1014. VCH Weinheim

    Google Scholar 

  • Fowler BA, Goering PL (1991): Antimony. In: Merian E (ed): Metals and their compounds in the environment: 743–750. VCH Weinheim

    Google Scholar 

  • Geostandards Newsletter (1989): Special issue of Geostandard Newsletter. Inernational Group of the Association Nationale de la Recherche Technique Vol XIII, Paris

  • Geovariances (1997): ISATIS documentation. Avon, France

    Google Scholar 

  • Goovaerts P (1997): Geostatistics for natural resources evaluation. New York, Oxford University Press

    Google Scholar 

  • Herget J (1996): Räumliche Differenzierung der Schadstoffgehalte in Stadtböden Gelsenkirchens. Ber z dt Landeskunde 70 (1): 183–201

    Google Scholar 

  • Hiller DA, H Meuser (1998): Urbane Böden. Springer Verlag, Berlin

    Google Scholar 

  • Hurtig H-W (1990): Die Immissionsbelastung von Böden durch Antimon. In: Kommission Reinhaltung der Luft im VDI und DIN (ed): Wirkungen von Luftverunreinigungen auf Böden: 91–102. VDI-Verlag, Düsseldorf

    Google Scholar 

  • Isaaks EH, Srivastava RM (1989): Applied Geostatistics. Oxford University Press, New York

    Google Scholar 

  • Journel AG, Huijbregts ChJ (1991): Mining Geostatistics. Academic Press, London

    Google Scholar 

  • Kastner-Klein P, Plate EJ (1999): Wind-tunnel study of concentration fields in street canyons. Atmospheric Environment 33 (24–25): 3973–3980

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1984): Trace elements in soils and plants. CRC Press Inc, Boca Raton, Florida

    Google Scholar 

  • Klein P, Rau M, Röckle R, Plate EJ (1994): Concentration estimation around point sources located in the vicinity of U-shape buildings. In: Baldasano JM, Brebbia CA, Power H, P Zanetti (eds): Air pollution II, Vol 2: Pollution control and monitoring. Computational Mechanics Publications

  • Kramar U (1993): Methoden zur Interpretation von Daten der geochemischen Bachsedimentprospektion am Beispiel der Sierra de San Carlos/Tamaulipas Mexiko. Karlsruhe Geochemische Hefte 1, Karlsruhe

  • Kramar U (1997): Advances in energy-dispersive X-ray flourescence. Journal of Geochemical Exploration 58: 73–80

    Article  CAS  Google Scholar 

  • Kramar U (1999): X-ray Fluorescence Spectrometers. In: Lindon JC, Tranter GE, Holmes JL (eds): Encyclopedia of Spectroscopy and Spectrometry Vol III: 2467–2477. Academic Press, San Diego

    Google Scholar 

  • Kramer H (1994): Observation of the earth and its environment -Survey of missions and sensors. Springer Verlag, Berlin

    Google Scholar 

  • Krauskopf BK, Bird DK (1995): Introduction to Geochemistry. McGraw-Hill, Inc New York

    Google Scholar 

  • Kretschmar H, Neumann A, Surkus A-E (1997): Schwermetalle. In: Blume H-P, Schleuß U (eds): Bewertung anthropogener Stadtböden. Institut für Pflanzenernährung und Bodenkunde. Ökologie Zentrum, Kiel

    Google Scholar 

  • Krige DG (1978): Lognormal - De wijsian geostatistics for ore evaluation. Geostatistics 1, SA Inst of Min Met Vlonogr Ser

  • Krige DG, Guarascio M, Camisani-Calzolari FA (1989): Early South African geostatistical techniques in today’s perspective. In: Armstrong M (ed) Geostatistics: 1-19. Kluwer Academic Publisher, Amsterdam, The Netherlands

    Google Scholar 

  • Kuntze H, Fleige H, Hindel R, Wippermann T, Filipinski M, Gruppe M, Pluquet E (1991): Empfindlichkeit der Böden gegenüber geogenen und anthropogenen Gehalten an Schwermetallen -Empfehlungen für die Praxis. In: Rosenkranz D, Bachmann G, Einsele G, Flarreß H-M (eds): Bodenschutz: 1530. Erich Schmidt Verlag, Berlin

    Google Scholar 

  • Landesanstalt für Umweltschutz Baden-Württemberg (1994): Schwermetallgehalte in Böden aus verschiedenen Ausgangsgesteinen Baden-Württembergs, Karlsruhe

    Google Scholar 

  • Markus JA, McBratney AB (1996): An urban soil study: Heavy metals in Glebe, Australia. Aust J Soil Res 34 (3): 453–465

    Article  CAS  Google Scholar 

  • Matheron G (1963): Principles of geostatistics. Econ Geol 58: 1246–1266

    Article  CAS  Google Scholar 

  • Matheron G (1971): The theory of regionalized variables and its applications. Les Cahiers du Centre de Morph. Mathématique de Fontainebleau

  • Meuser H (1993): Technogene Substrate in Stadtböden des Ruhrgebietes. Z Pflanzenernähr Bodenk 156: 137–142

    Article  Google Scholar 

  • Meuser H (1996): Technogene Substrate als Ausgangsgestein der Böden urban-industrieller Verdichtungsräume. Schriftenreihe d Inst f Pflanzenernährung u Bodenkunde. Nr 35. Universität Kiel

  • Nathanail CP, Ferguson CC, Browne MJ, Hooker PJ (1998): Mapping the risks to human health from urban soils using geostatistical techniques. Contaminated Soil ’98, Vol II: 1013–1014. Thomas Telford, London

    Google Scholar 

  • Neite H, Reinirkens P (1996): Flächenhafte Darstellung der stofflichen Belastung von Böden in digitalen Bodenbelastungskarten. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 80: 53–56

    Google Scholar 

  • Norra S (1997): Anorganische Schadstoffbelastungen in Stäuben, Straßensedimenten, Böden und Pflanzen entlang innerstädtischer Straßen. Karslruher Berichte zur Geographie und Geoökologie No 10. Institute of Geography and Geoecology, University of Karslruhe

  • Nriagu JO, Pacyna JM (1988): Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333: 134–139

    Article  CAS  Google Scholar 

  • Ohnesorge FK, Wilhelm M (1991); Zinc. In: Merian E (ed): Metals and their compounds in the environment: 1309–1342. VCH Weinheim

    Google Scholar 

  • Puchelt H (1992): Environmental Inorganic geochemistry of the continental crust. In: Hutzinger Ö (ed): The Handbook of Environmental Chemistry Vol 1, Part F: 27–63. Springer Verlag, Berlin

    Google Scholar 

  • Radtke U, Thönnessen, M, Gerlach R (1997): Die Schwermetallver-teilung in Stadtböden - the distribution of heavy metals in urban soils. Geographische Rundschau 49 (10): 556–561

    Google Scholar 

  • Reinirkens P (1991): Siedlungsböden im Ruhrgebiet - Bedeutung und Klassifikation im urban-Industriellen Ökosystem Bochums. Ferdinand Schönlngh, Paderborn

    Google Scholar 

  • Stüben D, Meurer M, Huck K, Norra S (1998): Transport, transformation and retention of harmful anthropogenic substances In urban areas. In: Breuste J, Feldmann H, Uhlmann Ö (eds): Urban Ecology: 195–197. Springer Verlag, Berlin

    Google Scholar 

  • Stüben D, Norra S (2000): Die Notwendigkeit komplexer Schadstoffflussanalysen aus geochemischer Sicht und als Grundlage für eine nachhaltige Stadtplanung - A geochemical view of complex analyses of fluxes of harmful substances as a basis for sustainable urban planning. In: Raumforschung und Raumordnung. Bundesamt für Bauwesen und Raumordnung 58 (2–3): 103–129

    Google Scholar 

  • Thornton I (1991): Metal contamination of soils in urban areas. In: Bullock P, Gregory PJ (eds): Soils in their urban Environment: 47–75. Oxford, Blackwell Scientific Publications

    Google Scholar 

  • Türcke T (1997): Untersuchung der Isotopenverhältnlsse stabiler Isotope d13C und d34S In technischen Substraten des Straßenverkehrs und In straßennahen Böden. Diploma thesis. Institute of Petrography and Geochemistry, University of Karlsruhe (TH)

    Google Scholar 

  • Türcke T, Norra S, Stüben D, Berner Z, Leosson M (1999): Identifikation der Kfz-bürtlgen Schadstoffbelastung mit Hilfe der Verhältnisse der stabilen Isotope von Kohlenstoff und Schwefel. UWSF - Z Umweltchem Ökotox 11 (3): 127–133

    Google Scholar 

  • Tyutyunnlk YG, Gorlitskii BA (1998): The factor analysis of geochemlcal pecularlties of urban soils in ukraine. European Soil Science 31 (1): 92–100

    Google Scholar 

  • Umweltbundesamt (ed) (1989): Empfehlungen des Arbeitskreises Stadtböden der Deutschen Bodenkundlichen Gesellschaft für die bodenkundliche Kartieranleitung urban, gewerblich und industriell überformter Flächen (Stadtböden) - Recommendations of the working group ‘Urban Soils’ of the German Soil Science Society for the Soil Survey of urban, commercial and industrial Influenced sites (urban soils). UBA-FB 89-056, Berlin

  • Ward NI (1990): Lead contamination of the London Orbital (M25) Motorway (since its opening in 1986). The Science of the Total Environment 93: 277–284

    Article  CAS  Google Scholar 

  • Wijs HJ de (1951): Statistics of ore distribution. Part I: Frequency distribution of assay values, Geologie en Mljnbouw 13: 365–375

    Google Scholar 

  • Wijs HJ de (1953): Statistics of ore distribution. Part II: Theory of binomial distribution applied to sampling and engineering problems. Geologie en Mljnbouw 15:-12–24

    Google Scholar 

  • Wlxson BG, Davles BE (1993): Lead in soil task force recommended guidelines. Society for Environmental Geochemistry and Health. Northwood, Sciences Reviews

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Norm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norm, S., Weber, A., Kramar, U. et al. Mapping of trace metals in urban soils. J Soils Sediments 1, 77–97 (2001). https://doi.org/10.1007/BF02987713

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02987713

Keywords

Navigation