Skip to main content
Log in

Heavy Metals and Metalloids in Soils, Road Dust, and Their PM10 Fractions in Sebastopol: Levels, Sources, and Pollution Risk

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The accumulation levels, spatial distribution, and sources of heavy metals and metalloids (HMMs) in urban soils, road dust, and their PM10 particles (diameter <10 µm) are for the first time assessed in different functional areas and on the roads of different types in Sebastopol, a large industrial and recreational city. The chemical analysis was done by ICP-MS and ICP-AES methods. The main pollutants of urban soils and road dust are Pb, Zn, Sb, Cd, Sn, Cu, and Mo. The results demonstrate an uneven spatial distribution of individual HMMs within the city resulting from terrigenous and anthropogenic sources. The concentrations of almost all HMMs in the PM10 particles of soils and dust are considerably higher as compared with the total contents, the share of Zn, Bi, and Cs exceeding 65% of the total content and of As, Pb, Sb, Cd, Pb, W, V, Ni, and Co amounting to approximately 50%. PM10 particles, forming a larger number of anomalies with an extreme HMM pollution level in industrial zones and courtyard driveways of residential zones, are the most hazardous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. L. A. Bagrova, V. A. Bokov, and N. V. Bagrov, Geography of Crimea (Lybid’, Kyiv, 2001) [in Russian].

    Google Scholar 

  2. A. V. Varenik, S. A. Bobrova, V. Yu. Erkushov, E. V. Katunina, Yu. A. Mal’chenko, and O. A. Pereverzev, “Specific features of the of nutrients and pollutants and radionuclides with atmospheric precipitation and aerosols in the area of Sevastopol and the Crimean coast,” Tr. Gos. Okeanogr. Inst., No. 217, 209–221 (2016).

  3. D. V. Vlasov, O. V. Kukushkina, N. E. Kosheleva, and N. S. Kasimov, “Levels and factors of the accumulation of metals and metalloids in roadside soils, road dust, and their PM10 fraction in the Western okrug of Moscow,” Eurasian Soil Sci. 55 (5), 556–572 (2022). https://doi.org/10.1134/S1064229322050118

    Article  Google Scholar 

  4. Geochemistry of the Environment (Nedra, Moscow, 1990) [in Russian].

  5. Report “On the State and Protection of the Environment on the Territory of the Republic of Crimea in 2016” (OOO “Print-2”, Izhevsk, 2017).

  6. N. N. D’yakov, Yu. A. Mal’chenko, S. A. Bobrova, A. I. Ryabinin, A. E. Lipchenko, N. P. Klimenko, and V. V. Taranov, “Background characteristics of particle size distribution of aerosols in the city of Sevastopol,” Nauchno-Issled. Publ., No. 3 (35), 5–13 (2016).

  7. E. V. Evstaf’eva, A. M. Bogdanova, T. M. Minkina, S. N. Sushkova, N. V. Baranovskaya, S. S. Mandzhieva, and E. M. Antonenko, “The content of heavy metals in the soils of residential areas of the Republic of Crimea,” Izv. Tomsk. Politekh. Univ. Inzhiniring Georesur. 329 (10), 19–29 (2018).

    Google Scholar 

  8. E. I. Ignatov, E. V. Yaseneva, and I. A. Yaseneva, “Ranking of coastal cities of Crimea based on environmental indicators,” Ispol’z. Okhr. Prir. Resur. Ross., No. 5, 58–61 (2015).

  9. N. S. Kasimov, L. A. Bezberdaya, D. V. Vlasov, and M. Yu. Lychagin, “Metals, metalloids, and benzo[a]pyrene in PM10 particles of soils and road dust of Alushta city,” Eurasian Soil Sci. 52 (12), 1608–1621 (2019).

    Article  Google Scholar 

  10. N. S. Kasimov, D. V. Vlasov, N. E. Kosheleva, and E. M. Nikiforova, Geochemistry of Landscapes in Eastern Moscow (APR, Moscow, 2016) [in Russian].

  11. Yu. Yu. Klimova and M. A. Kosovskaya, “Technogenic air pollution of the coastal urban area of Sevastopol,” Energ. Ustanovki Tekhnol. 2 (2), 57–67 (2016).

    Google Scholar 

  12. P. P. Krechetov and T.M. Dianova, Soil Chemistry. Analytical Research Methods (Geogr. Fak. Mosk. Gos. Univ., Moscow, 2009) [in Russian].

    Google Scholar 

  13. L. N. Novikova and Yu. A. Novikov, “Geochemical classification of Crimean landscapes and their technogenic pollution,” Uch. Zap. Krym. Fed. Univ. im. Vernadskogo. Geogr. Geol. 21 (3), 231–237 (2008).

    Google Scholar 

  14. P. D. Podgorodetskii, Crimea: Nature (Tavriya, Simferopol, 1988) [in Russian].

    Google Scholar 

  15. I. Ya. Polovitskii and P. G. Gusev, Soils of Crimea and Increasing Their Fertility (Tavriya, Simferopol, 1987) [in Russian].

    Google Scholar 

  16. B. A. Revich, “Fine suspended particles in the atmospheric air and their impact on the health of residents of megacities,” Probl. Ekol. Monit. Model. Ekosist., No. 3, 53–78 (2018).

  17. . I. Ryabinin, S. A. Bobrova, L. V. Saltykova, and E. A. Danilova, “Influx of chemical elements with atmospheric fallout in the coastal regions of Crimea in 2004–2008,” Morsk. Gidrofiz. Zh., No. 5, 30–39 (2011)

  18. A. I. Ryabinin, Yu. A. Mal’chenko, S. A. Bobrova, and L. A. Smirnova, “The chemical composition of atmospheric fallout and aerosols in the biosphere of Sevastopol and the South Coast of Crimea according to multi-element monitoring data,” in Environmental Control Systems–2016: Proceedings of International Scientific Technical Conference (Inst. Prir.-Tekhn. Sist., Sevastopol, 2016), p. 16.

  19. A. A. Seleznev, “Heavy metals in the surface mud sediment of the city of Yekaterinburg,” Izv. Ural. Gos. Gorn. Univ. 1 (49), 46–54 (2018).

    Google Scholar 

  20. L. L. Smirnova and A. I. Ryabinin, “Migration of microbiota and chemical elements in the composition of aerosols, the coast of Sevastopol (Black Sea),” Nauchno-Issled. Publ., No. 3 (35), 14–18 (2016).

  21. E. E. Sovga, A. A. Pasynkov, and O. A. Andreeva, “Ecological state of the coastal-marine regions of Crimea,” Ekol. Bezop. Prir. Shel’fovoi Zon Kompleksn. Ispol’z. Resur. Shel’fa, No. 25–1, 169–180 (2011).

  22. E. Yu. Sukhacheva and Ya. S. Revina, “Medium-scale soil map of the Crimea southern coast,” Eurasian Soil Sci. 53 (4), 397–404 (2020).

    Article  Google Scholar 

  23. S. I. Fonova, Candidate’s Dissertation in Geography (Voronezh, 2017).

  24. T. M. Chekmareva and M. A. Sidorova, “Ecological assessment of the anthropogenic transformation of landscapes in the village Kacha of the Sevastopol region of Crimea,” in Collection of Scientific Works of Sevastopol National University of Nuclear Energy and Industry (2013), pp. 107–113.

  25. Number of Permanent Population of Sevastopol City. Office of the Federal State Statistics Service for the Republic of Crimea and Sevastopol (2022). https://crimea.gks.ru/ storage/mediabank/11111.pdf

  26. V. V. Shkapenko, E. G. Musich, V. M. Kadoshnikov, I. V. Kuraeva, and Yu. Yu. Voityuk, “Biogeochemical features of bottom sediments of the Black Sea coastal zone,” Visn. Dnipropetr. Univ. Geol. Geogr. 25 (2), 129–135 (2017).

    Google Scholar 

  27. T. L. Shchekaturina and Yu. N. Yakovchuk, “Dynamic pollution of the air basin of the Balaklava district of Sevastopol,” Vestn. Mezhdunar. Akad. Nauk Ekol. Bezop. 21 (1), 9–13 (2016).

    Google Scholar 

  28. E. V. Yaseneva, “Features of the distribution of pollutants in the atmosphere from stationary sources in Sevastopol,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 4, 65–68 (2007).

  29. E. V. Yaseneva and I. A. Yaseneva, “Content of heavy metals in soils of Sevastopol,” Ispol’z. Okhr. Prir. Resur. Ross., No. 2(158), 34–37 (2019).

  30. I. A. Yaseneva and P. V. Pereverzev, “The use of GIS technologies for the geoecological assessment of the city of Sevastopol,” Interaktivnaya Nauka, No. 6 (16), 16–18 (2017). https://doi.org/10.21661/r-451285

    Article  Google Scholar 

  31. I. A. Yaseneva and E. V. Yaseneva, “Morbidity in children as an indicator of the environmental situation in Sevastopol,” InterKarto. InterGIS. Geoinformation Support for Sustainable Development of Territories: Proceedings of International Conference (Mosk. Univ., Moscow, 2020), Vol. 26, Part 3, pp. 62–77. https://doi.org/10.35595/2414-9179-2020-3-26-62-77

  32. J. A. Acosta, C. A. Faz, K. Kalbitz, B. Jansen, and S. Martinez-Martinez, “Heavy metal concentrations in particle size fractions from street dust of Murcia (Spain) as the basis for risk assessment,” J. Environ. Monit. 13, 3087–3096 (2011). https://doi.org/10.1039/c1em10364d

    Article  Google Scholar 

  33. J. A. Acosta, C. A. Faz, S. Martinez-Martinez, and J. M. Arocena, “Enrichment of metals in soils subjected to different land uses in a typical Mediterranean environment (Murcia City, southeast Spain),” Appl. Geochem. 26, 405–414 (2011). https://doi.org/10.1016/j.apgeochem.2011.01.023

    Article  Google Scholar 

  34. F. Ajmone-Marsan, M. Biasioli, T. Kralj, H. Grcman, C. M. Davidson, A. S. Hursthouse, L. Madrid, and S. Rodrigues, “Metals in particle-size fractions of the soils of five European cities,” Environ. Pollut. 152, 73–81 (2008).

    Article  Google Scholar 

  35. C. A. Alves, M. Evtyugina, A. M. P. Vicente, E. D. Vicente, T. V. Nunes, P. M. A. Silva, M. A. C. Duarte, C. A. Pio, F. Amato, and X. Querol, “Chemical profiling of PM10 from urban road dust,” Sci. Total Environ. 634, 41–51 (2018). https://doi.org/10.1016/j.scitotenv.2018.03.338

    Article  Google Scholar 

  36. F. Amato, A. Alastuey, A. Karanasiou, F. Lucarelli, S. Nava, G. Calzolai, M. Severi, et al., “AIRUSE–LIFE+: A harmonized PM speciation and source apportionment in five southern European cities,” Atmos. Chem. Physics 16, 3289–3309 (2016). https://doi.org/10.5194/acp-16-3289-2016

    Article  Google Scholar 

  37. F. Amato, M. Pandolfi, T. Moreno, M. Furger, J. Pey, A. Alastuey, N. Bukowiecki, A. Prevot, U. Baltensperger, and X. Querol, “Sources and variability of inhalable road dust particles in three European cities,” Atmos. Environ. 45 (37), 6777–6787 (2011).

    Article  Google Scholar 

  38. F. Bencharif-Madani, H. Ali-Khodja, A. Kemmouche, A. Terrouche, K. Lokorai, L. Naidja, and M. Bouziane, “Mass concentrations, seasonal variations, chemical compositions and element sources of PM10 at an urban site in Constantine, northeast Algeria,” J. Geochem. Explor. 206, 106356 (2019). https://doi.org/10.1016/j.gexplo.2019.106356

    Article  Google Scholar 

  39. L. Bezberdaya, N. Kosheleva, O. Chernitsova, M. Lychagin, and N. Kasimov, “Pollution level, partition and spatial distribution of benzo(a)pyrene in urban soils, road dust and their PM10 fraction of health-resorts (Alushta, Yalta) and industrial (Sebastopol) cities of Crimea,” Water 14, 561 (2022). https://doi.org/10.3390/w14040561

    Article  Google Scholar 

  40. M. Birke, U. Rauch, and J. Stummeyer, “Urban geochemistry of Berlin, Germany,” in Mapping the Chemical Environment of Urban Areas (Wiley-Blackwell, Oxford, 2011), pp. 245–268.

    Google Scholar 

  41. A. Demetriades and M. Birke, Urban Geochemical Mapping Manual: Sampling, Sample Preparation, Laboratory Analysis, Quality Control Check, Statistical Processing and Map Plotting (EuroGeoSurveys, Brussels, 2015).

  42. A. Facchinelli, E. Sacchi, and L. Mallen, “Multivariate statistical and GIS-based approach to identify heavy metal sources in soils,” Environ. Pollut. 114, 313–324 (2001).https://doi.org/10.1016/S0269-7491(00)00243-8

  43. M. M. Glennon, P. Harris, R. T. Ottesen, R. P. Scanlon, and P. J. O' Connor, “The Dublin SURGE Project: Geochemical baseline for heavy metals in topsoils and spatial correlation with historical industry in Dublin, Ireland,” Environ. Geochem. Health 36, 235–254 (2014). https://doi.org/10.1007/s10653-013-9561-8

    Article  Google Scholar 

  44. T. Grigoratos and G. Martini, “Brake wear particle emissions: a review,” Environ. Sci. Pollut. Res. 22 (4), 2491–2504 (2015).

    Article  Google Scholar 

  45. C. Gunawardana, A. Goonetilleke, P. Egodawatta, L. Dawes, and S. Kokot, “Source characterisation of road dust based on chemical and mineralogical composition,” Chemosphere 87 (2), 163–170 (2012).https://doi.org/10.1016/j.chemosphere.2011.12.012

  46. R. M. Harrison, A. M. Jones, J. Gietl, J. Yin, and D. C. Green, “Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements,” Environ. Sci. Technol. 46, 6523–6529 (2012).

    Article  Google Scholar 

  47. R. M. Harrison, A. M. Jones, and R. L. Lawrence, “Major component composition of PM10 and PM2.5 from roadside and urban background sites,” Atmos. Environ. 38 (27), 4531–4538 (2004). https://doi.org/10.1016/j.atmosenv.2004.05.022

    Article  Google Scholar 

  48. B. Hu, J. Wang, B. Jin, Y. Li, and Z. Shi, “Assessment of the potential health risks of heavy metals in soils in a coastal industrial region of the Yangtze River delta,” Environ. Sci. Pollut. Res. 24, 19816–19826 (2017). doi.org/https://doi.org/10.1007/s11356-017-9516-1

    Article  Google Scholar 

  49. X. Hu, Y. Zhang, J. Luo, T. Wang, H. Lian, and Z. Ding, “Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China,” Environ. Pollut. 159, 1215–1221 (2011).

    Article  Google Scholar 

  50. B. Huang, Z. Yuan, D. Li, M. Zheng, X. Nie, and Y. Liao, “Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal(loid)s in soil: a review,” Environ. Sci.: Processes Impacts 22, 1596–1615 (2020).

    Google Scholar 

  51. J. H. J. Hulskotte, G. D. Roskam, and H. A. C. Denier van der Gon, “Elemental composition of current automotive braking materials and derived air emission factors,” Atmos. Environ. 99, 436–445 (2014).

    Article  Google Scholar 

  52. N. S. Kasimov, N. E. Kosheleva, D. V. Vlasov, K. S. Nabelkina, and A. V. Ryzhov, “Physicochemical properties of road dust in Moscow,” Geogr., Environ., Sustainability 12 (4), 96–113 (2019). https://doi.org/10.24057/2071-9388-2019-55

    Article  Google Scholar 

  53. H. Khademi, M. Gabarron, A. Abbaspour, S. Martinez-Martinez, A. Faz, and J. A. Acosta, “Distribution of metal(loid)s in particle size fraction in urban soil and street dust: influence of population density,” Environ. Geochem. Health 42, 4341–4354 (2020).

    Article  Google Scholar 

  54. S. Kong, B. Lu, Y. Ji, X. Zhao, Z. Bai, Y. Xu, Y. Liu, and H. Jiang, “Risk assessment of heavy metals in road and soil dusts within PM2.5, PM10 and PM100 fractions in Dongying city, Shandong Province, China,” J. Environ. Monit. 14, 791–803 (2012).

    Article  Google Scholar 

  55. E. Konstantinova, T. Minkina, S. Sushkova, A. Konstantinov, V. D. Rajput, and A. Sherstnev, “Urban soil geochemistry of an intensively developing Siberian city: A case study of Tyumen, Russia,” J. Environ. Manage. 239, 366–375 (2019). https://doi.org/10.1016/j.jenvman.2019.03.095

    Article  Google Scholar 

  56. E. Konstantinova, T. Minkina, A. Konstantinov, S. Sushkova, E. Antonenko, A. Kurasova, and S. Loiko, “Pollution status and human health risk assessment of potentially toxic elements and polycyclic aromatic hydrocarbons in urban street dust of Tyumen city, Russia,” Environ. Geochem. Health 44, 409–432 (2022). https://doi.org/10.1007/s10653-020-00692-2

    Article  Google Scholar 

  57. T. G. Krupnova, O. V. Rakova, S. V. Gavrilkina, E. G. Antoshkina, E. O. Baranov, and O. N. Yakimova, “Road dust trace elements contamination, sources, dispersed composition, and human health risk in Chelyabinsk, Russia,” Chemosphere 261, 127799 (2020). https://doi.org/10.1016/j.chemosphere.2020.127799

    Article  Google Scholar 

  58. D. V. Ladonin and A. P. Mikhaylova, “Heavy metals and arsenic in soils and street dust of the southeastern administrative district of Moscow: long-term data,” Eurasian Soil Sci. 53, 1635–1644 (2020). https://doi.org/10.1134/S1064229320110095

    Article  Google Scholar 

  59. C. Lanzerstorfer, “Heavy metals in the finest size fractions of road-deposited sediments,” Environ. Pollut. 239, 522–531 (2018). https://doi.org/10.1016/j.envpol.2018.04.063

    Article  Google Scholar 

  60. G. Li, G.-X. Sun, Y. Ren, X.-S. Luo, and Y.-G. Zhu, “Urban soil and human health: a review,” Eur. J. Soil Sci. 69, 196–215 (2018).

    Article  Google Scholar 

  61. H. Li, H. Ji, C. Shi, Y. Gao, Y. Zhang, X. Xu, H. Ding, L. Tang, and Y. Xing, “Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health,” Chemosphere 172, 505–515 (2017).

    Article  Google Scholar 

  62. Z. Li, Z. Ma, T. J. van der Kuijp, Z. Yuan, and L. Huang, “A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment,” Sci. Total Environ. 468–469, 843–853 (2014). https://doi.org/10.1016/j.scitotenv.2013.08.090

    Article  Google Scholar 

  63. K. Ljung, A. Torin, M. Smirk, F. Maley, A. Cook, and P. Weinstein, “Extracting dust from soil: a simple solution to a tricky task,” Sci. Total Environ. 407, 589–593 (2008). https://doi.org/10.1016/j.scitotenv.2008.09.007

    Article  Google Scholar 

  64. X.‑S. Luo, S. Yu, and X.‑D. Li, “Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: implications for assessing the risk to human health,” Environ. Pollut. 159, 1317–1326 (2011).

    Article  Google Scholar 

  65. J. Lv, Y. Liu, Z. Zhang, J. Dai, B. Dai, and Y. Zhu, “Identifying the origins and spatial distributions of heavy metals in soils of Ju Country (Eastern China) using multivariate and geostatistical approach,” J. Soils Sediments 15, 163–178 (2015). https://doi.org/10.1007/s11368-014-0937-x

    Article  Google Scholar 

  66. D. Moskovchenko, R. Pozhitkov, A. Soromotin, and V. Tyurin, “The content and sources of potentially toxic elements in the road dust of Surgut (Russia),” Atmosphere 13, 30 (2022). https://doi.org/10.3390/atmos13010030

    Article  Google Scholar 

  67. P. Nekhoroshkov, A. Peshkova, I. Zinicovscaia, K. Vergel, and A. Kravtsova, “Assessment of the atmospheric deposition of heavy metals and other elements in the mountain Crimea using moss biomonitoring technique,” Atmosphere 13, 573 (2022). https://doi.org/10.3390/atmos13040573

    Article  Google Scholar 

  68. M. A. Oliver and P. J. Gregory, “Soil, food security and human health: a review,” Eur. J. Soil Sci. 66, 257–276 (2015).

    Article  Google Scholar 

  69. E. Padoan, C. Romé, and F. Ajmone-Marsan, “Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect,” Sci. Total Environ. 601–602, 89–98 (2017). https://doi.org/10.1016/j.scitotenv.2017.05.180

    Article  Google Scholar 

  70. P. Pant, S. J. Baker, A. Shukla, C. Maikawa, Pollitt K. J. Godri, and R. M. Harrison, “The PM10 fraction of road dust in the UK and India: characterization, source profiles and oxidative potential,” Sci. Total Environ. 530–531, 445–452 (2015).

    Article  Google Scholar 

  71. O. Ramírez, A. M. Sanchez de la Campa, F. Amato, T. Moreno, L. F. Silva, and J. D. de la Rosa, “Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity,” Sci. Total Environ. 652, 434–446 (2019).

    Article  Google Scholar 

  72. C. Reimann and P. de Caritat, “Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors,” Sci. Total Environ. 337, 91–107 (2005).

    Article  Google Scholar 

  73. R. Rudnick and S. Gao, “Composition of the continental crust,” Treatise Geochem. 4, 1–51 (2014). https://doi.org/10.1016/b978-0-08-095975-7.00301-6

    Article  Google Scholar 

  74. O. Samonova and E. Aseyeva, “Particle size partitioning of metals in humus horizons of two small erosional landforms in the middle Protva basin – a comparative study,” Geogr., Environ., Sustainability 13, 260–271 (2020). https://doi.org/10.24057/2071-9388-2019-116

    Article  Google Scholar 

  75. J. Seinfeld and S. Pandis, Atmospheric Chemistry and Physics (John Wiley & Sons Inc., 2006).

  76. A. A. Seleznev, I. V. Yarmoshenko, and G. P. Malinovsky, “Urban geochemical changes and pollution with potentially harmful elements in seven Russian cities,” Sci. Rep. 10, 2020. https://doi.org/10.1038/s41598-020-58434-4

  77. L. Smyrnova, E. Katunina, A. Rjabinin, and I. Anninskaja, “The impact of atmospheric precipitation (rainfalls) on the sea-surface microlayer in the Sevastopol coastal waters (Crimea, The Black Sea),” Ecologica Montenegrina 14, 30–38 (2017).

    Article  Google Scholar 

  78. R. A. Sutherland, F. M. G. Tack, and A. D. Ziegler, “Road-deposited sediments in an urban environment: A first look at sequentially extracted element loads in grain size fractions,” J. Hazard. Mater. 225–226, 54–62 (2012).

    Article  Google Scholar 

  79. A. Thorpe and R. M. Harrison, “Sources and properties of non-exhaust particulate matter from road traffic: a review,” Sci. Total Environ. 400 (1–3), 270–282 (2008).

    Article  Google Scholar 

  80. D. Vlasov, N. Kosheleva, and N. Kasimov, “Spatial distribution and sources of potentially toxic elements in road dust and its PM10 fraction of Moscow megacity,” Sci. Total Environ. 761, 143267 (2021). https://doi.org/10.1016/j.scitotenv.2020.143267

    Article  Google Scholar 

  81. D. Vlasov, O. Ramírez, and A. Luhar, “Road dust in urban and industrial environments: sources, pollutants, impacts, and management,” Atmosphere 13, 607 (2022). https://doi.org/10.3390/atmos13040607

    Article  Google Scholar 

  82. Y. Vystavna, L. Rushenko, D. Diadin, O. Klymenko, and M. Klymenko, “Trace metals in wine and vineyard environment in southern Ukraine,” Food Chem. 146, 339–344 (2014).

    Article  Google Scholar 

  83. X. S. Wang, Y. Qin, and Y. K. Chen, “Heavy meals in urban roadside soils, part 1: effect of particle size fractions on heavy metals partitioning,” Environ. Geol. 50 (7), 1061–1066 (2006).

    Article  Google Scholar 

  84. C. L. S. Wiseman, C. Levesque, and P. E. Rasmussen, “Characterizing the sources, concentrations and resuspension potential of metals and metalloids in the thoracic fraction of urban road dust,” Sci. Total Environ. 786, 147467 (2021). https://doi.org/10.1016/j.scitotenv.2021.147467

    Article  Google Scholar 

  85. Z. Yutong, X. Qing, and L. Shenggao, “Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (northeastern China),” Environ. Sci. Pollut. Res. 23, 14600–14607 (2016).

    Article  Google Scholar 

  86. J. Zhang, L. Wu, Y. Zhang, F. Li, X. Fang, and H. Mao, “Elemental composition and risk assessment of heavy metals in the PM10 fractions of road dust and roadside soil,” Particuology 44, 146–152 (2019). https://doi.org/10.1016/j.partic.2018.09.003

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to E.V. Terskaya, L.V. Dobrydneva, G.L. Shinkareva, D.V. Vlasov, A.Yu. Trishin, A.Yu. Rudenko, T.V. Dubrovskaya, and D.G. Sycheva for their assistance in field and laboratory work.

Funding

Field work was performed as part of the Crimean expedition of the Russian Geographical Society and analytical studies were supported by the Russian Foundation for Basic Research (project no. 19-05-50101). The data were analyzed and interpreted under the Program for Development of Interdisciplinary Science and Education School with the Lomonosov Moscow State University “The Future of the Planet and Global Environmental Changes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Bezberdaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Chirikova

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezberdaya, L.A., Kasimov, N.S., Chernitsova, O.V. et al. Heavy Metals and Metalloids in Soils, Road Dust, and Their PM10 Fractions in Sebastopol: Levels, Sources, and Pollution Risk. Eurasian Soil Sc. 55, 1871–1890 (2022). https://doi.org/10.1134/S1064229322601470

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322601470

Keywords:

Navigation