Skip to main content
Log in

Research perspective on nitrogen bmp development for potato

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Nutrient best management practices (BMPs) are developed to optimize tuber yield and quality, and also to reduce environmental losses of nutrients. Nitrogen (N) management is important both in controlling potato growth and development and in minimizing the risks of groundwater contamination by nitrate and emissions of nitrous oxide, a greenhouse gas. Development of BMPs for N management must consider variation in the magnitude and timing of both N supply and crop N demand. Consequently, these BMPs must reflect differences among potato cultivars, soil properties, cropping systems, water management, and climatic conditions. Despite decades of research, selection of the appropriate rate and timing of fertilizer N application remains a challenging task. A greater understanding of soil N cycling, the development of test-based N recommendation systems, improvements in controlled-release fertilizer technology, and opportunities for spatially variable N management may provide new answers to the old question of “How much N do I apply to my potato crop, at what growth stage, and in what form?”

Resumen

Se desarrollaron las mejores prácticas de manejo (BMPs) para mejorar el rendimiento y calidad de los tubérculos y también para reducir la pérdida de nutrientes. El manejo del nitrógeno (N) es importante para controlar el crecimiento y desarrollo de la planta y reduce la contaminación del agua del suelo por nitratos y emisiones de ácido nitroso o gas de invernadero. El desarrollo de BMPs para el manejo del N debe considerar la variacián en magnitud y tiempo, tanto del suministro de N como de la demanda de N por el cultivo. Por consiguiente, estos BMPs deben reflejar diferencias entre cultivares de papa, propiedades del suelo, sistemas de cultivo, manejo del agua y condiciones climáticas. A pesar de décadas de investigatión, la selectión de un grado apropiado y momento de aplicación de fertilizante nitrogenado permanecen como tarea discutible. Un mejor entendimiento del ciclo del N, desarrollo de sistemas de recomendación basados en pruebas de N, mejoras en la tecnología de liberatión de fertilizantes controlados y oportunidades para el manejo espacialmente variable del N, puede proporcionar nuevas respuestas a preguntas viejas de “¿Cuanto N debo aplicar a mi cultivo de papa, en que estado de desarrollo y en que forma?”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Allen EJ and RK Scott. 1980. An analysis of growth of the potato crop. J Agric Sci Camb 94:583–606.

    Google Scholar 

  • Allen EJ and RK Scott. 1992. Principles of agronomy and their application in the potato industry.In: PM Harris (ed), The Potato Crop: The Scientific Basis for Improvement. 2nd ed. Chapman and Hall, London, pp. 816–881.

    Google Scholar 

  • Alva AK 2004. Potato nitrogen management. J Vegetable Crop Prod 10:97–130.

    Article  Google Scholar 

  • Amrein TM, S Bachmann, A Noti, M Biedermann, MF Barbosa, S Biedermann-Brem, K Grob, A Reiser, P Realini, F Escher and R Amado. 2003. Potential of acrylamide formation, sugars, and free asparagine in potatoes: A comparison of cultivars and farming systems. J Agric Food Chem 51:5556–5560.

    Article  CAS  PubMed  Google Scholar 

  • Bélanger G, JR Walsh, JE Richards, PH Milburn and N Ziadi. 2000a. Yield response of two potato cultivars to supplemental irrigation and N fertilization in New Brunswick. Am J Potato Res 77:11–21.

    Google Scholar 

  • Bélanger G, JR Walsh, JE Richards, PH Milburn and N Ziadi. 2000b. Comparison of three statistical models describing potato yield response to nitrogen fertilizer. Agron J 92:902–908.

    Google Scholar 

  • Bélanger G, JR Walsh, JE Richards, PH Milburn and N Ziadi. 2001a. Predicting nitrogen fertilizer requirements of potatoes in Atlantic Canada with soil nitrate determinations. Can J Soil Sci 81:535–544.

    Google Scholar 

  • Bélanger G, JR Walsh, JE Richards, PH Milburn and N Ziadi. 2001b. Critical nitrogen curve and nitrogen nutrition index for potato in eastern Canada. Am J Potato Res 78:355–364.

    Google Scholar 

  • Bélanger G, JR Walsh, JE Richards, PH Milburn and N Ziadi. 2002. Nitrogen fertilization and irrigation affects tuber characteristics of two potato cultivars. Am J Potato Res 79:269–279.

    Google Scholar 

  • Bélanger G, N Ziadi, JR Walsh, JE Richards and PH Milburn. 2003. Residual soil nitrate after potato harvest. J Environ Qual 32:607–612.

    PubMed  Google Scholar 

  • Biemond H and J Vos. 1992. Effects of nitrogen on the development and growth of the potato plant. 2. The partitioning of dry matter, nitrogen and nitrate. Ann Bot 70:37–45.

    CAS  Google Scholar 

  • Blackmer TM and JS Schepers. 1996. Aerial photography to detect nitrogen stress in corn. J Plant Physiol 148:440–444.

    CAS  Google Scholar 

  • Booij R and D Uenk. 2004. Crop-reflection-based DSS for supplemental nitrogen dressings in potato production.In: DKL MacKerron and AJ Haverkort (eds), Decision Support Systems in Potato Production. Wageningen Academic Publishers. pp. 47–53.

    Google Scholar 

  • Botha EJ, B Leblon, BJ Zebarth and J Watmough. 2005. Non-destructive estimation of potato leaf chlorophyll content from hyperspectral measurements through analytical model inversion. Presented at the 26th Canadian Symposium on Remote Sensing in Wolfville, Nova Scotia, June 14–16, 2005. [CD-ROM].

  • Botha EJ, BJ Zebarth, and B Leblon. 2006. Non-destructive estimation of potato leaf chlorophyll and protein contents from hyperspectral measurements using the PROSPECT radiative transfer model. Can J Plant Sci 86:279–291.

    CAS  Google Scholar 

  • Bundy LG and TW Andraski. 2005. Recovery of fertilizer nitrogen in crop residues and cover crops on an irrigated sandy soil. Soil Sci Soc Am J 69:640–648.

    Article  CAS  Google Scholar 

  • Cambouris AN, MC Nolin, BJ Zebarth and M Laverdiere. 2006. Soil management zones delineated by electrical conductivity to characterize spatial and temporal variations in potato yield and in soil properties. Am J Potato Res 83:381–395.

    CAS  Google Scholar 

  • Chambenoit C, F Laurent, JM Machet and H Boizard. 2004. Development of a decision support system for nitrogen management on potatoes.In: DKL MacKerron and AJ Haverkort (eds), Decision Support Systems in Potato Production. Wageningen Academic Publishers. pp. 55–67.

    Google Scholar 

  • Conen F, KE Dobbie and KA Smith. 2000. Predicting N2O emissions from agricultural land through related soil parameters. Global Change Biology 6:417–426.

    Article  Google Scholar 

  • CPVQ. 1995. Coefficients d’efficacité des engrais de ferme. Conseil des productions végétales du Quebec Inc. Bulletin Technique 22.

  • Curless MA, KA Kelling and PE Speth. 2005. Nitrogen and phosphorus availability from liquid dairy manure to potatoes. Am J Potato Res 82:287–297.

    Google Scholar 

  • Davenport JR, PH Milburn, CJ Rosen and RE Thornton. 2005. Environmental impacts of potato nutrient management. Am J Potato Res 82:321–328.

    CAS  Google Scholar 

  • De la Morena I, A Guillen and LF Garcia del Moral. 1994. Yield development in potatoes as influenced by cultivar and the timing and level of nitrogen fertilization. Am Potato J 71:165–173.

    Article  Google Scholar 

  • Delgado JA and HR Duke. 2000. Potential use of precision farming to improve nutrient management on an irrigated potato-barley rotation. Proceedings of the Fifth International Conference on Precision Agriculture. ASA-CSSA-SSSA. [CD-ROM].

  • Delgado JA, RR Riggenbach, RT Sparks, MA Dillon, LM Kawanabe, and RJ Ristau. 2001. Evaluation of nitrate-nitrogen transport in a potato-barley rotation. Soil Sci Soc Am J 65:878–883.

    CAS  Google Scholar 

  • Duchenne T, JM Machet and M Martin. 1997. Potatoes.In: G Lemaire (ed), Diagnosis of the Nitrogen Status in Crops. Springer-Verlag, Berlin. pp. 119–130.

    Google Scholar 

  • Environment Canada. 2004. Canada’s Greenhouse Gas Inventory 1990–2002. Greenhouse Gas Division, Environment Canada.

  • Errebhi M, CJ Rosen and DE Birong. 1998a. Calibration of a petiole nitrate sap test for irrigated Russet Burbank potatoes. Commun Soil Sci Plant Anal 29:23–35.

    Article  CAS  Google Scholar 

  • Errebhi M, CJ Rosen, SC Gupta and DE Birong. 1998b. Potato yield response and nitrate leaching as influenced by nitrogen management. Agron J 90:10–15.

    Google Scholar 

  • Errebhi M, CJ Rosen, FI Lauer, MW Martin, JB Bamberg and DE Birong. 1998c. Screening of exotic potato germplasm for nitrogen uptake and biomass production. Am J Potato Res 75: 93–100.

    Google Scholar 

  • Errebhi M, CJ Rosen, FI Lauer, MW Martin and JB Bamberg. 1999. Evaluation of tuber-bearingSolarium species for nitrogen use efficiency and biomass partitioning. Am J Potato Res 76: 143–151.

    Google Scholar 

  • Feibert EBG, CC Shock and LD Saunders. 1998. Nitrogen fertilizer requirements of potato using carefully scheduled sprinkler irrigation. HortScience 33:262–265.

    Google Scholar 

  • Gallagher I. 1995. 1991–1994 New Brunswick farm business management potato farm enterprise cost analysis report. New Brunswick Department of Agriculture and Rural Development.

  • Gasser MO, MR Laverdière, R Lagacé and J Caron. 2002. Impact of potato-cereal rotations and slurry applications on nitrate leaching and nitrogen balance in sandy soils. Can J Soil Sci 82:469–479.

    CAS  Google Scholar 

  • Gianello C and JM Bremner. 1986. A simple chemical method of assessing potentially available organic nitrogen in soil. Commun Soil Sci Plant Anal 17:195–214.

    Article  CAS  Google Scholar 

  • Goffart JP and M Olivier. 2004. Management of N-fertilization of the potato crop using total N-advice software and in-season chlorophyll-meter measurements.In: DKL MacKerron and AJ Haverkort (eds), Decision Support Systems in Potato Production. Wageningen Academic Publishers. pp. 69–83.

    Google Scholar 

  • Greenwood DJ, G Lemaire, G Gosse, P Cruz, A Draycott and JJ Neeteson. 1990. Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann Bot 66:425–436.

    CAS  Google Scholar 

  • Griffin TS. 2007. Nitrogen availability.In: J Schepers (ed), Nitrogen in Agricultural Soils, 2nd ed. Agronomy Series. ASA CSSA SSSA, Madison WI. In press.

    Google Scholar 

  • Griffin TS and OB Hesterman. 1991. Potato response to legume and fertilizer nitrogen sources. Agron J 83:1004–1012.

    Google Scholar 

  • Grindlay DJC. 1997. Towards an explanation of crop nitrogen demand based on the optimization of leaf nitrogen per unit leaf area. J Agric Sci Camb 128:377–396.

    Article  Google Scholar 

  • Groza HI, BD Bowen, D Kichefski, SJ Peloquin, WR Stevenson, AJ Bussan and J Jiang. 2005. Millenium Russet: A dual purpose russet potato variety. Am J Potato Res 82:211–219.

    Google Scholar 

  • Harris PM 1992. Mineral nutrition.In: PM Harris (ed), The Potato Crop: The Scientific Basis for Improvement. 2nd ed. Chapman and Hall, London. pp. 163–213.

    Google Scholar 

  • Haverkort AJ and DKL MacKerron (eds). 2000. Management of Nitrogen and Water in Potato Production. Wageningen Academic Publishers, Wageningen, The Netherlands.

    Google Scholar 

  • Haverkort AJ, J Vos and R Booij. 2003. Precision management of nitrogen and water in potato production through monitoring and modelling. Acta Hort (ISHS) 619:213–224.

    Google Scholar 

  • Hill AR. 1986. Nitrate and chloride distribution and balance under continuous potato cropping. Agric Ecosystems Environ 15:267–280.

    Article  Google Scholar 

  • Hiller LK and RE Thornton. 1993. Management of physiological disorders.In: RC Rowe (ed), Potato Health Management. APS Press, St. Paul, MN. pp. 87–94.

    Google Scholar 

  • Honeycutt CW, LJ Potaro and WA Halteman. 1991. Predicting nitrate formation from soil, fertilizer, crop residue, and sludge with thermal units. J Environ Qual 20:850–856.

    Google Scholar 

  • Hutchinson C, E Simonne, P Solano, J Meldrum and P Livingston Way. 2003. Testing of controlled release fertilizer programs for seep irrigated Irish potato production. J Plant Nutr 26: 1709–1723.

    Article  CAS  Google Scholar 

  • IPCC. 2001. Climate Change 2001: The Scientific Basis. Press Syndicate of the University of Cambridge, Cambridge, UK

    Google Scholar 

  • Jackson SD. 1999. Multiple signalling pathways control tuber induction in potato. Plant Physiol 119:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Jamieson PD, PJ Stone, RF Zyskowski, S Sinton and RJ Martin. 2004. Implementation and testing of the Potato Calculator, a decision support system for nitrogen and irrigation management.In: DKL MacKerron and AJ Haverkort (eds), Decision Support Systems in Potato Production. Wageningen Academic Publishers. pp. 85–99.

    Google Scholar 

  • Jensen C, B Stougaard and P Olsen. 1994. Simulation of water and nitrogen dynamics at three Danish locations by use of the DAISY model. Acta Agric Scand 44:73–83.

    Google Scholar 

  • Joern BC and ML Vitosh. 1995a, Influence of applied nitrogen on potato. Part I: Yield, quality, and nitrogen uptake. Am Potato J 72: 51–63.

    Article  Google Scholar 

  • Joern BC and ML Vitosh. 1995b. Influence of applied nitrogen on potato. Part II: Recovery and partitioning of applied nitrogen. Am Potato J 72: 73–84.

    Article  Google Scholar 

  • Jongschaap REE and R Booij. 2004. Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status. International Journal of Applied Earth Observation and Geoinformation 5:205–218.

    Article  Google Scholar 

  • Khan SA, RL Mulvaney and RG Hoeft. 2001. A simple soil test for detecting sites that are nonresponsive to nitrogen fertilization. Soil Sci Soc Am J 65:1751–1760.

    CAS  Google Scholar 

  • King BA, JC Stark and JP Taberna, Jr. 1999. In-season spatial variability of potato petiole nitrogen.In: PC Robert, RH Rust, and WE Larson (eds), Proceedings of the Fourth International Conference on Precision Agriculture. ASA-CSSA-SSSA. pp. 55–65.

  • Kuisma P. 2002. Efficiency of split nitrogen fertilization with adjusted irrigation on potato. Agric Food Sci Finland 11: 59–74.

    Google Scholar 

  • Lemaire G and P Millard. 1999. An ecophysiological approach to modelling resource fluxes in competing plants. J Experimental Bot 50:15–28.

    Article  CAS  Google Scholar 

  • Lewis RJ and SL Love. 1994. Potato genotypes differ in petiole nitratenitrogen concentrations over time. HortScience 29:175–179.

    Google Scholar 

  • Li H, LE Parent, A Karam and C Tremblay. 2003. Efficiency of soil and fertilizer nitrogen of a sod-potato system in the humid, acid and cool environment. Plant Soil 251:23–36.

    Article  CAS  Google Scholar 

  • Liegel EA and LM Walsh. 1976. Evaluation of sulfur coated urea (SCU) applied to irrigated corn and potatoes. Agron J 68:457–463.

    CAS  Google Scholar 

  • Livingston Way, P. 2007. Development of a functional widely accepted and adopted BMP program in response to government regulation. Am J Potato Res (this issue).

  • Long CM, SS Snapp, DS Douches and RW Chase. 2004. Tuber yield, storability, and quality of Michigan cultivars in response to nitrogen management and seedpiece spacing. Am J Potato Res 81:347–357.

    Google Scholar 

  • Love SL, JC Stark and T Salaiz. 2005. Response of four potato cultivars to rate and timing of nitrogen fertilizer. Am J Potato Res 82:21–30.

    Google Scholar 

  • MAFF. 2000. Fertiliser recommendations for agricultural and horticultural crops (RB209). Ministry of Agriculture, Fisheries and Food. The Stationary Office, London.

    Google Scholar 

  • Magdoff F. 1991. Understanding the Magdoff pre-sidedress nitrate test for corn. J Prod Agric 4:297–305.

    Google Scholar 

  • Maidl F-X, H Brunner and E Sticksel. 2002. Potato uptake and recovery of nitrogen15N-enriched ammonium nitrate. Geoderma 105:167–177.

    Article  CAS  Google Scholar 

  • Manrique LA, JR Kiniry, T Hodges and DS Axness. 1991. Dry matter production and radiation interception of potato. Crop Sci 31:1044–1049.

    Google Scholar 

  • Martin RJ, MD Craighead, PH Williams and CS Tregurtha. 2001. Effect of fertiliser rate and type on the yield and nitrogen balance of a Pukekohe potato crop. Agronomy New Zealand 31:71–80.

    Google Scholar 

  • Maynard DN and OA Lorenz. 1979. Controlled release fertilizers for horticultural crops. Hort Rev 1:79–140.

    CAS  Google Scholar 

  • McDole RE, DT Westermann, GD Kleinschmidt, GE Kleinkopf and JC Qjala. 1987. Idaho Fertilizer Guide: Potatoes. Current Information Series No. 261. University of Idaho, College of Agriculture. http://radio/boisestate.edu/information/otherprojects/potato/fert.html.

  • Milburn P, JE Richards, C Gartley, T Pollock, H O’Neill and H Bailey. 1990. Nitrate leaching from systematically tiled potato fields in New Brunswick, Canada. J Environ Qual 19:448–454.

    Article  CAS  Google Scholar 

  • Milburn P, JA MacLeod and B Sanderson. 1997. Control of fall nitrate leaching from early harvested potatoes on Prince Edward Island. Can Agric Engin 39:263–271.

    Google Scholar 

  • Millard P. 1986. The nitrogen content of potatoSolarium tuberosum L.) tubers in relation to nitrogen application — the effect on amino acid composition and yields. J Sci Food Agric 37:107–114.

    Article  CAS  Google Scholar 

  • Millard P, D Robinson and LA Mackie-Dawson. 1989. Nitrogen partitioning within the potato(Solanum tuberosum L.) plant in relation to nitrogen supply. Ann Bot 63:289–296.

    Google Scholar 

  • Miller JS and CJ Rosen. 2005. Interactive effects of fungicide programs and nitrogen management on potato yield and quality. Am J Potato Res 82:399–409.

    CAS  Google Scholar 

  • Minotti PL, DE Halseth and JB Sieczka 1994. Field chlorophyll measurements to assess the nitrogen status of potato varieties. HortScience 29:1497–1500.

    Google Scholar 

  • Mosier AR. 1998. Soil processes and global change. Biol Fertil Soils 27:221–229.

    Article  CAS  Google Scholar 

  • Munoz F, RS Mylavarapu and CM Hutchinson. 2005. Environmentally responsible potato production systems: A review. J Plant Nutr 28:1287–1309.

    Article  CAS  Google Scholar 

  • NBDA. 1993. Russet Burbank: A management profile. New Brunswick Department of Agriculture Potato Factsheet. Publ. no. 0004E-93.

  • Neeteson JJ, DJ Greenwood and A Draycott. 1987. A dynamic model to predict yield and optimum nitrogen fertiliser application rate for potatoes. Proceedings 262. The Fertiliser Society, London.

    Google Scholar 

  • Neeteson JJ. 1989. Evaluation of the performance of three advisory methods for nitrogen fertilization of sugar beet and potatoes. Neth J Agric Sci 37:143–155.

    Google Scholar 

  • Oenema O, A Bannink, SG Sommer and GL Velthof. 2001. Gaseous nitrogen emissions from livestock farming systems.In: RF Follett and JL Hatfield (eds), Nitrogen in the Environment: Sources, Problems and Management. Elsevier. pp. 255–289.

    Chapter  Google Scholar 

  • O’Leary M, G Rehm and M Schmitt. 1990. Providing proper N credit for legumes. University of Minnesota Extension service publication FO-03425-GO. www.extension.umn.edu/distribution/cropsys-tems/DC3769.html.

  • Olivier, M, JP Goffart and JL Ledent. 2006. Threshold values for chlorophyll meter as decision tool for nitrogen management of potato. Agron J 98:496–506.

    Article  CAS  Google Scholar 

  • Olsson K, R Svensson and C Roslund. 2004. Tuber components affecting acrylamide formation and colour in fried potato: Variation by variety, year, storage temperature and storage time. J Sci Food Agric 84:447–458.

    Article  CAS  Google Scholar 

  • OMAFRA. 2002. Soil management and fertilizer use: Adjustments to fertilizer recommendations (legumes and manure). Ontario Ministry of Agriculture, Food and Rural Affairs. www.omafra.gov.on.ca/english/crops/pub811/2manure.htm.

  • Pare T, EG Gregorich and BH Ellert. 1995. Comparison of soil nitrate extracted by potassium chloride and adsorbed on an anion exchange membranein situ. Commun Soil Sci Plant Anal 26:883–898.

    Article  CAS  Google Scholar 

  • Payne WJ. 1981. Denitrification. Wiley-Interscience Publications, New York. p. 214.

    Google Scholar 

  • Porter GA and JA Sisson. 1991. Petiole nitrate content of Maine-grown Russet Burbank and Shepody potatoes in response to varying nitrogen rate. Am Potato J 68:493–505.

    Article  Google Scholar 

  • Porter GA and JA Sisson. 1993. Yield, market quality, and petiole nitrate concentration of non-irrigated Russet Burbank and Shepody potatoes in response to sidedressed nitrogen. Am Potato J 70: 101–116.

    Article  CAS  Google Scholar 

  • Postma R and CD van Loon. 1996. Nitrogen losses by denitrification during the growth of potatoes.In: Transactions of the 9th Nitrogen Workshop. Braunschweig, Germany, September, 1996. pp. 535–538.

    Google Scholar 

  • Richards JE, PH Milburn, AA MacLean and G Demerchant. 1990. Intensive potato production effects on nitrate-N concentrations of rural New Brunswick well water. Can Agric Engin 32:189–196.

    Google Scholar 

  • Roberts S, HH Cheng and FO Farrow. 1991. Potato uptake and recovery of nitrogen-15-enriched ammonium nitrate from periodic applications. Agron J 83:378–381.

    CAS  Google Scholar 

  • Rodrigues MA. 2004. Establishment of continuous critical levels for indices of plant and presidedress soil nitrogen status in the potato crop. Commun Soil Sci Plant Anal 35:2067–2085.

    Article  CAS  Google Scholar 

  • Rosen CJ. 1991. Potato fertilization on irrigated soils. University of Minnesota Extension service publication FO-03425-GO. www.extension.umn.edu/distribution/cropsystems/DC3425.html

  • Rosen C, M Errebhi, J Moncrief, S Gupta, H Cheng and D Birong. 1993. Nitrogen fertilization studies on irrigated potatoes: Nitrogen use, soil nitrate movement, and petiole sap analysis for predicting nitrogen needs. Field Research in Soils. Misc. Publ. 79–1993. Minn. Agric. Expt. Sta., Univ of Minn. pp. 14–38.

  • Ruser R, H Flessa, R Schilling, H Steindl and F Beese. 1998. Soil compaction and fertilization effects on nitrous oxide and methane fluxes in potato fields. Soil Sci Soc Am J 62:1587–1595.

    CAS  Google Scholar 

  • Ruser R, H Flessa, R Schilling, F Beese and JC Munch. 2001. Effect of crop-specific field management and N fertilization on N2O emissions from a fine-loamy soil. Nutrient Cycling in Agroecosystems 59:177–191.

    Article  Google Scholar 

  • Ruser R, H Flessa, R Russow, G Schmidt, F Buegger and JC Munch. 2006. Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting. Soil Biol Biochem 38:263–274.

    CAS  Google Scholar 

  • Saffigna PG, CB Tanner and DR Keeney. 1976. Non-uniform infiltration under potato canopies caused by interception, stemflow and hilling. Agron J 68:337–342.

    Google Scholar 

  • Sanderson JB, JA MacLeod and J Kimpinski. 1999. Glyphosate application and timing of tillage of red clover affects potato response to N, soil N profile, and root and soil nematodes. Can J Soil Sci 79:65–72.

    CAS  Google Scholar 

  • Sattelmacher B, F Klotz and H Marschner. 1990. Influence of the nitrogen level on root growth and morphology of two potato varieties differing in nitrogen acquisition. Plant Soil 123:131–137.

    Article  CAS  Google Scholar 

  • Schepers JS and JJ Meisinger. 1994. Field indicators of nitrogen mineralization.In: Soil Testing: Prospects for Improving Nutrient Recommendations. SSSA Special Publication 40. pp. 31–47.

    Google Scholar 

  • Serna, MD and F Pomares. 1992. Evaluation of chemical indices of soil organic nitrogen availability in calcareous soils. Soil Sci Soc Am J 56:1486–1491.

    CAS  Google Scholar 

  • Sharifl M and BJ Zebarth. 2006. Nitrate influx kinetic parameters of five potato cultivars during vegetative growth. Plant Soil 288:91–99.

    Article  CAS  Google Scholar 

  • Sharifi M, BJ Zebarth and W Coleman. 2007. Screening for N-use efficiency in potato using a re-circulating hydroponic system. Commun Soil Sci Plant Anal. (In press).

  • Shock C, A Pereira and E Eldredge. 2007. Best management practices for irrigation. Am J Potato Res (this issue).

  • Simard RR, N Ziadi, MC Nolin and AN Cambouris. 2001. Prediction of nitrogen responses of corn by soil nitrogen mineralization indicators. The Scientific World 1(S2):135–141.

    Google Scholar 

  • Sims JT and DC Wolf. 1994. Poultry waste management: Agricultural and environmental issues. Adv Agron 52:1–83.

    Article  CAS  Google Scholar 

  • Smith KA. 1990. Greenhouse gas fluxes between land surfaces and the atmosphere. Progr Phys Geogr 14:349–372.

    Article  Google Scholar 

  • Smith KA and BJ Chambers. 1993. Utilizing the nitrogen content of organic manures on farms — problems and practical solutions. Soil Use and Management 9:105–112.

    Article  Google Scholar 

  • Smith KA, IP McTaggart, KE Dobbie and F Conen. 1998. Emissions of N2O from Scottish agricultural soils, as a function of fertilizer N. Nutrient Cycling in Agroecosystems 52:123–130.

    Article  CAS  Google Scholar 

  • Simonne EH and CM Hutchinson. 2005. Controlled-release fertilizers for vegetable production in the era of best management practices: Teaching new tricks to an old dog. HortTechnology 15:36–46.

    Google Scholar 

  • Snapp SS and AM Fortuna. 2003. Predicting nitrogen availability in irrigated potato systems. HortTechnology 13:598–604.

    Google Scholar 

  • Stark JC and GA Porter. 2005. Potato nutrient management in sustainable cropping systems. Am J Potato Res 82:329–338.

    Article  Google Scholar 

  • Steenvoorden J, H Fonck and HP Oosterom. 1986. Losses of nitrogen from intensive grassland systems by leaching and surface runoff.In: H van der Meer, JC Ryden and GC Ennik (eds), Nitrogen Fluxes in Intensive Grassland Systems. Martinus Nijhoff Publishers, Dordrecht, The Netherlands. pp. 85–97.

    Google Scholar 

  • Tisdale SL, WL Nelson, JD Beaton and JL Havlin. 1993. Soil Fertility and Fertilizers, 5th ed. MacMillan Publishing Co.

  • Thomas S, H Barlow, G Francis and D Hedderly. 2004. Emission of nitrous oxide from fertilised potatoes. SuperSoil 2004: 3rd Australian New Zealand Soils Conf., Dec. 5-9, 2004. Sydney, Australia. [CD-ROM].

  • USEPA. 2005. Inventory of U.S. greenhouse gas emissions and sinks: 1990-2003. United States Environmental Protection Agency. EPA 430-R-05-003.

  • Van Delden A, JJ Schröder, MJ Kropff, C Grashoff and R Booij. 2003. Simulated potato yield, and crop and soil nitrogen dynamics under different organic nitrogen management strategies in The Netherlands. Agric Ecosystems Environ 96:77–95.

    Google Scholar 

  • Van Heemst HD. 1986. The distribution of dry matter during growth of a potato crop. Potato Res 29:55–66.

    Article  Google Scholar 

  • Vitosh ML and GH Silva. 1997. Factors affecting potato petiole sap nitrate tests.In: TM Hood and JB Jones, {jrJr.} (eds), Soil and Plant Analysis in Sustainable Agriculture and Environment. Marcel Dekker Inc., New York. pp. 643–658.

    Google Scholar 

  • Vos J. 1995. Nitrogen and the growth of potato crops.In: AJ Haverkort and DKL MacKerron (eds), Potato Ecology and Modelling of Crops under Conditions of Limiting Growth. Kluwer Academic Publishers, Dordrecht. pp. 115–128.

    Google Scholar 

  • Vos J. 1999. Split nitrogen application in potato: Effects on accumulation of nitrogen and dry matter in the crop and on the soil nitrogen budget. J Agric Sci Camb 133:263–274.

    Article  Google Scholar 

  • Vos J. and M Bom. 1993. Hand-held chlorophyll meter: A promising tool to assess the nitrogen status of potato foliage. Potato Res 36:301–308.

    Article  CAS  Google Scholar 

  • Vos J. and PEL van der Putten. 2004. Nutrient cycling in a cropping system with potato, spring wheat, sugar beet, oat and nitrogen catch crops. II. Effect of catch crops on nitrate leaching in autumn and winter. Nutr Cycling Agroecosystems 70:23–31.

    Article  CAS  Google Scholar 

  • Waddell JT, SC Gupta, JF Moncrief, CJ Rosen and DD Steele. 1999. Irrigation and nitrogen management effects on potato yield, tuber quality and nitrogen uptake. Agron J 91:991–997.

    Google Scholar 

  • Wang D and CJ Rosen. 2003. Determining growth and yield limiting factors in potato from canopy spectral reflectance.In: W Gao and DR Shaw (eds), Ecosystems’ dynamics, agricultural remote sensing and modeling, and site specific agriculture. Proceedings of SPIE vol. 5153. pp. 109–118.

  • Wang-Pruski G, BJ Zebarth, Y Leclerc, WJ Arsenault, EJ Botha, S Moorehead and D Ronis. 2007. Effect of soil type and nutrient management on potato after cooking darkening. Am J Potato Res. (In press).

  • Waterer D. 1997a. Influence of irrigation, nitrogen and seed piece spacing on yields and tuber size distribution of seed potatoes. Can J Plant Sci 77:141–148.

    Google Scholar 

  • Waterer D. 1997b. Petiole sap NO3-N testing as a method of monitoring nitrogen nutrition of potato crops. Can J Plant Sci 77:273–278.

    Google Scholar 

  • Weinert TL, WL Pan, MR Moneymaker, GS Santo and RG Stevens. 2002. Nitrogen recycling by nonleguminous winter cover crops to reduce leaching in potato rotations. Agron J 94:365–372.

    Google Scholar 

  • Westcott MP, VR Stewart and RE Lund. 1991. Critical petiole nitrate levels in potato. Agron J 83:844–850.

    CAS  Google Scholar 

  • Westcott MP, ML Know and JM Wraith. 1994. Kinetics of soil-plant nitrate relations in potato and peppermint: a model for derivative diagnosis. Commun Soil Sci Plant Anal 25:469–478.

    Article  CAS  Google Scholar 

  • Westermann DT. 1993. Fertility management.In: RC Rowe (ed), Potato Health Management. APS Press, St. Paul, MN. pp. 77–86.

    Google Scholar 

  • Westermann DT, and RE Sojka. 1996. Tillage and nitrogen placement effects on nutrient uptake by potato. Soil Sci Soc Am J 60:1448–1453.

    CAS  Google Scholar 

  • Whitley KM and JR Davenport. 2003. Nitrate leaching potential under variable and uniform nitrogen fertilizer management in irrigated potato systems. HortTechnology 13:605–609.

    CAS  Google Scholar 

  • Whitley KM, JR Davenport and SR Manley. 2000. Differences in nitrate leaching under variable and conventional nitrogen fertilizer management in irrigated potato systems. Proceedings of the Fifth International Conference on Precision Agriculture. ASA-CSSA-SSSA [CD-ROM].

  • Williams CMJ and NA Maier. 1990. Determination of the nitrogen status of irrigated potato crops. I. Critical nutrient ranges for nitrate-nitrogen in petioles. J Plant Nutr 13:971–984.

    CAS  Google Scholar 

  • Yuan F-M and WL Bland. 2005. Comparison of light- and temperature-based index models for potato(Solanum tuberosum L.) growth and development. Am J Potato Res 82:345–352.

    Google Scholar 

  • Zebarth BJ and PH Milburn. 2003. Spatial and temporal distribution of soil inorganic nitrogen concentration in potato hills. Can J Soil Sci 83:183–195.

    Google Scholar 

  • Zebarth BJ, Y Leclerc, G Moreau, R Gareau and PH Milburn. 2003a. Soil inorganic nitrogen content in commercial potato fields in New Brunswick. Can J Soil Sci 83:425–429.

    CAS  Google Scholar 

  • Zebarth BJ, H Rees, N Tremblay, P Fournier and B Leblon. 2003b. Mapping spatial variation in potato nitrogen status using the “N Sensor.” Acta Hort (ISHS) 627:267–273.

    Google Scholar 

  • Zebarth BJ, G Tai, R Tarn, H de Jong and PH Milburn. 2004a. Nitrogen use efficiency characteristics of commercial potato cultivars. Can J Plant Sci 84:589–598.

    Google Scholar 

  • Zebarth BJ, Y Leclerc and G Moreau. 2004b. Rate and timing of nitrogen fertilization of Russet Burbank potato: Nitrogen use efficiency. Can J Plant Sci 84:845–854.

    CAS  Google Scholar 

  • Zebarth BJ, Y Leclerc, G Moreau and E Botha. 2004c. Rate and timing of nitrogen fertilization of Russet Burbank potato: Yield and processing quality. Can J Plant Sci 84:855–863.

    Google Scholar 

  • Zebarth BJ, Y Leclerc, G Moreau, JB Sanderson, WJ Arsenault, E Botha and G Wang-Pruski. 2005. Estimation of soil nitrogen supply in potato fields using a plant bioassay approach. Can J Soil Sci 85:377–386.

    CAS  Google Scholar 

  • Zubillaga M and S Urricariet. 2005. Assessment of nitrogen status in wheat using aerial photography. Commun Soil Sci Plant Anal 36:1787–1798.

    Article  CAS  Google Scholar 

  • Zvomuya F and CJ Rosen. 2001. Evaluation of Polyolefin-coated urea for potato production on a sandy soil. HortScience 36:1057–1060.

    CAS  Google Scholar 

  • Zvomuya F and CJ Rosen. 2002. Biomass partitioning and nitrogen use efficiency of ‘Superior’ potato following genetic transformation for resistance to Colorado potato beetle. J Am Soc Hort Sci 127:703–709.

    Google Scholar 

  • Zvomuya F, CJ Rosen and JC Miller {jrJr.} 2002. Response of Russet Norkotah clonal selections to nitrogen fertilization. Am J Potato Res 79: 231–239.

    Google Scholar 

  • Zvomuya F, CJ Rosen, MP Russelle and SC Gupta. 2003. Nitrate leaching and nitrogen recovery following application of polyolefin-coated urea to potato. J Environ Qual 32:480–489.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Zebarth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zebarth, B.J., Rosen, C.J. Research perspective on nitrogen bmp development for potato. Amer J of Potato Res 84, 3–18 (2007). https://doi.org/10.1007/BF02986294

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02986294

Additional Keywords

Navigation