Skip to main content
Log in

Database of normal human cerebral blood flow measured by SPECT: II. Quantification of I-123-IMP studies with ARG method and effects of partial volume correction

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

The limited spatial resolution of SPECT causes a partial volume effect (PVE) and can lead to the significant underestimation of regional tracer concentration in the small structures surrounded by a low tracer concentration, such as the cortical gray matter of an atrophied brain. The aim of the present study was to determine, using123I-IMP and SPECT, normal CBF of elderly subjects with and without PVE correction (PVC), and to determine regional differences in the effect of PVC and their association with the regional tissue fraction of the brain.

Methods

Quantitative CBF SPECT using123I-IMP was performed in 33 healthy elderly subjects (18 males, 15 females, 54–74 years old) using the autoradiographic method. We corrected CBF for PVE using segmented MR images, and analyzed quantitative CBF and regional differences in the effect of PVC using tissue fractions of gray matter (GM) and white matter (WM) in regions of interest (ROIs) placed on the cortical and subcortical GM regions and deep WM regions.

Results

The mean CBF in GM-ROIs were 31.7 ± 6.6 and 41.0 ± 8.1 ml/100 g/min for males and females, and in WM-ROIs, 18.2 ± 0.7 and 22.9 ± 0.8 ml/100 g/min for males and females, respectively. The mean CBF in GM-ROIs after PVC were 50.9 ± 12.8 and 65.8 ±16.1 ml/100 g/min for males and females, respectively. There were statistically significant differences in the effect of PVC among ROIs, but not between genders. The effect of PVC was small in the cerebellum and parahippocampal gyrus, and it was large in the superior frontal gyrus, superior parietal lobule and precentral gyrus.

Conclusion

Quantitative CBF in GM recovered significantly, but did not reach values as high as those obtained by invasive methods or in the H2 15O PET study that used PVC. There were significant regional differences in the effect of PVC, which were considered to result from regional differences in GM tissue fraction, which is more reduced in the frontoparietal regions in the atrophied brain of the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size.J Comput Assist Tomogr 1979; 3:299–308.

    Article  PubMed  CAS  Google Scholar 

  2. Labbe C, Froment JC, Kennedy A, Ashburner J, Cinotti L. Positron emission tomography metabolic data corrected for cortical atrophy using magnetic resonance imaging.Alzheimer Dis Assoc Disord 1996; 10:141–170.

    Article  PubMed  CAS  Google Scholar 

  3. Meltzer CC, Zubieta JK, Brandt J, Tune LE, Mayberg HS, Frost JJ. Regional hypometabolism in Alzheimer’s disease as measured by positron emission tomography after correction for effects of partial volume averaging.Neurology 1996;47:454–461.

    PubMed  CAS  Google Scholar 

  4. Ibanez V, Pietrini P, Alexander GE, Furey ML, Teichberg D, Rajapakse JC, et al. Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease.Neurology 1998; 50:1585–1593.

    PubMed  CAS  Google Scholar 

  5. Muller-Gartner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects.J Cereb Blood Flow Metab 1992; 12:571–583.

    PubMed  CAS  Google Scholar 

  6. Matsuda H, Ohnishi T, Asada T, Li ZJ, Kanetaka H, Imabayashi E, et al. Correction for partial-volume effects on brain perfusion SPECT in healthy men.J Nucl Med 2003; 44:1243–1252.

    PubMed  Google Scholar 

  7. Iida H, Itoh H, Nakazawa M, Hatazawa J, Nishimura H,Onishi Y, et al. Quantitative mapping of regional cerebral blood flow using iodine-123-IMP andSPECT J Nucl Med 1994;35:2019–2030.

    PubMed  CAS  Google Scholar 

  8. Iida H, Akutsu T, Endo K, Fukuda H, Inoue T, Ito H, et al. A multicenter validation of regional cerebral blood flow quantitation using [123I]iodoamphetamine and single photon emission computed tomography.J Cereb Blood Flow Metab 1996; 16:781–793.

    Article  PubMed  CAS  Google Scholar 

  9. Ashburner J, Friston K. Multimodal image coregistration and partitioning—a unified framework.Neuroimage 1997; 6:209–217.

    Article  PubMed  CAS  Google Scholar 

  10. Ashburner J, Friston KJ. Voxel-based morphometry—the methods.Neuroimage 2000; 11:805–821.

    Article  PubMed  CAS  Google Scholar 

  11. Rorden C, Brett M. Stereotaxic display of brain lesions.Behav Neurol 2000; 12:191–200.

    PubMed  Google Scholar 

  12. Ashburner J, Neelin P, Collins DL, Evans A, Friston KJ. Incorporating prior knowledge into image registration.Neuroimage 1997; 6:344–352.

    Article  PubMed  CAS  Google Scholar 

  13. Ashburner J, Friston KJ. Nonlinear spatial normalization using basis functions.Hum Brain Mapp 1999; 7:254–266.

    Article  PubMed  CAS  Google Scholar 

  14. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets.Neuroimage 2003; 19:1233–1239.

    Article  PubMed  Google Scholar 

  15. Lassen NA. Normal average value of cerebral blood flow in younger adults is 50 ml/100 g/min.J Cereb Blood Flow Metab 1985; 5:347–349.

    PubMed  CAS  Google Scholar 

  16. Ingvar DH, Cronqvist S, Ekberg R, Risberg J, Hoedt-Rasmussen K. Normal values of regional cerebral blood flow in man, including flow and weight estimates of gray and white matter. A preliminary summary.Acta Neurol Scand Suppl 1965; 14:72–78.

    PubMed  CAS  Google Scholar 

  17. Hoedt-Rasmussen K. Regional cerebral flow in man measured externally following intra-arterial administration of 85-Kr or 133-Xe dissolved in saline.Acta Neurol Scand Suppl 1965; 14:65–68.

    PubMed  CAS  Google Scholar 

  18. Wilkinson IM, Bull JW, Duboulay GH, Marshall J, Russell RW, Symon L. Regional blood flow in the normal cerebral hemisphere.J Neurol Neurosurg Psychiatry 1969; 32:367- 378.

    Article  PubMed  CAS  Google Scholar 

  19. Hatazawa J, Fujita H, Kanno I, Satoh T, Iida H, Miura S, et al. Regional cerebral blood flow, blood volume, oxygen extraction fraction, and oxygen utilization rate in normal volunteers measured by the autoradiographic technique and the single breath inhalation method.Ann Nucl Med 1995; 9:15–21.

    PubMed  CAS  Google Scholar 

  20. Pantano P, Baron JC, Lebrun-Grandie P, Duquesnoy N, Bousser MG, Comar D. Regional cerebral blood flow and oxygen consumption in human aging.Stroke 1984; 15:635–641.

    PubMed  CAS  Google Scholar 

  21. Yamaguchi T, Kanno I, Uemura K, Shishido F, Inugami A,Ogawa T et al. Reduction in regional cerebral metabolic rate of oxygen during human aging.Stroke 1986; 17:1220- 1228.

    PubMed  CAS  Google Scholar 

  22. Leenders KL, Perani D, Lammertsma AA, Heather JD,Buckingham P, Healy MJ, et al. Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age.Brain 1990; 113 (Pt 1):27–47.

    Article  PubMed  Google Scholar 

  23. Kanno I, Iida H, Miura S, Murakami M, Takahashi K, Sasaki H, et al. A system for cerebral blood flow measurement using an H2 15O autoradiographic method and positron emission tomography.J Cereb Blood Flow Metab 1987; 7:143–153.

    PubMed  CAS  Google Scholar 

  24. Iida H, Law I, Pakkenberg B, Krarup-Hansen A, Eberl S, Holm S, et al. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: I. Theory, error analysis, and stereologic comparison.J Cereb Blood Flow Metab 2000; 20:1237–1251.

    Article  PubMed  CAS  Google Scholar 

  25. Di Rocco RJ, Silva DA, Kuczynski BL, Narra RK, Ramalingam K, Jurisson S, et al. The single-pass cerebral extraction and capillary permeability-surface area product of several putative cerebral blood flow imaging agents.J Nucl Med 1993; 34:641–648.

    PubMed  Google Scholar 

  26. Hatazawa J, Iida H, Shimosegawa E, Sato T, Murakami M, Miura Y. Regional cerebral blood flow measurement with iodine-123-IMP autoradiography: normal values, reproducibility and sensitivity to hypoperfusion.J Nucl Med 1997; 38:1102–1108.

    PubMed  CAS  Google Scholar 

  27. Gur RC, Gur RE, Obrist WD, Hungerbuhler JP, Younkin D, Rosen AD, et al. Sex and handedness differences in cerebral blood flow during rest and cognitive activity.Science 1982; 217:659–661.

    Article  PubMed  CAS  Google Scholar 

  28. Rodriguez G, Warkentin S, Risberg J, Rosadini G. Sex differences in regional cerebral blood flow.J Cereb Blood Flow Metab 1988; 8:783–789.

    PubMed  CAS  Google Scholar 

  29. Meltzer CC, Cantwell MN, Greer PJ, Ben-Eliezer D, Smith G, Frank G, et al. Does cerebral blood flow decline in healthy aging? A PET study with partial-volume correction.J Nucl Med 2000; 41:1842–1848.

    PubMed  CAS  Google Scholar 

  30. Kuhl DE, Barrio JR, Huang SC, Selin C, Ackermann RF, Lear JL, et al. Quantifying local cerebral blood flow by N- isopropyl-p-[l23I]iodoamphetamine (IMP) tomography.J Nucl Med 1982; 23:196–203.

    PubMed  CAS  Google Scholar 

  31. Iida H, Narita Y, Kado H, Kashikura A, Sugawara S, Shoji Y, et al. Effects of scatter and attenuation correction on quantitative assessment of regional cerebral blood flow withSPECT.J Nucl Med 1998; 39:181–189.

    PubMed  CAS  Google Scholar 

  32. Huang SC, Mahoney DK, Phelps ME. Quantitation in positron emission tomography: 8. Effects of nonlinear parameter estimation on functional images.J Comput Assist Tomogr 1987; 11:314–325.

    Article  PubMed  CAS  Google Scholar 

  33. Ito H, Ishii K, Atsumi H, Inukai Y, Abe S, Sato M, et al. Error analysis of autoradiography method for measurement of cerebral blood flow by123I-IMP brain SPECT: a comparison study with table look-up method and microsphere model method.Ann Nucl Med 1995; 9:185–190.

    Article  PubMed  CAS  Google Scholar 

  34. Ito H, Shidahara M, Inoue K, Goto R, Kinomura S, Taki Y, et al. Effects of tissue heterogeneity on cerebral vascular response to acetazolamide stress measured by an I-123-IMP autoradiographic method with single-photon emission computed tomography.Ann Nucl Med 2005; 19:251–260.

    Article  PubMed  CAS  Google Scholar 

  35. Raz N, Gunning FM, Head D, Dupuis JH, McQuain J, Briggs SD, et al. Selective aging of the human cerebral cortex observedin vivo: differential vulnerability of the prefrontal gray matter.Cereb Cortex 1997; 7:268–282.

    Article  PubMed  CAS  Google Scholar 

  36. Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C. Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain.J Neurosci 2003; 23:3295–3301.

    PubMed  CAS  Google Scholar 

  37. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RSJ. A voxel-based morphometric study of ageing in 465 normal adult human brains.Neuroimage 2001; 14:21–36.

    Article  PubMed  CAS  Google Scholar 

  38. Meltzer CC, Kinahan PE, Greer PJ, Nichols TE, Comtat C, Cantwell MN, et al. Comparative evaluation of MR-based partial-volume correction schemes for PET.J Nucl Med 1999; 40:2053–2065.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Inoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inoue, K., Ito, H., Shidahara, M. et al. Database of normal human cerebral blood flow measured by SPECT: II. Quantification of I-123-IMP studies with ARG method and effects of partial volume correction. Ann Nucl Med 20, 139–146 (2006). https://doi.org/10.1007/BF02985626

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02985626

Key words

Navigation