Skip to main content
Log in

Targeted molecular imaging in oncology

  • Review
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Improvement of scintigraphic tumor imaging is extensively determined by the development of more tumor specific radiopharmaceuticals. Thus, to improve the differential diagnosis, prognosis, planning and monitoring of cancer treatment, several functional Pharmaceuticals have been developed. Application of molecular targets for cancer imaging, therapy and prevention using generator-produced isotopes is the major focus of ongoing research projects. Radionuclide imaging modalities (positron emission tomography, PET; single photon emission computed tomography, SPECT) are diagnostic cross-sectional imaging techniques that map the location and concentration of radionuclide-labeled radiotracers.99mTc- and68Ga-labeled agents using ethylenedicysteine (EC) as a chelator were synthesized and their potential uses to assess tumor targets were evaluated.99mTc (t1/2 = 6 hr, 140 keV) is used for SPECT and68Ga (t1/2 = 68 min, 511 keV) for PET. Molecular targets labeled with Tc-99m and Ga-68 can be utilized for prediction of therapeutic response, monitoring tumor response to treatment and differential diagnosis. Molecular targets for oncological research in (1) cell apoptosis, (2) gene and nucleic acid-based approach, (3) angiogenesis (4) tumor hypoxia, and (5) metabolic imaging are discussed. Numerous imaging ligands in these categories have been developed and evaluated in animals and humans. Molecular targets were imaged and their potential to redirect optimal cancer diagnosis and therapeutics were demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kubota K, Ishiwata K, Kubota R, et al. Tracer feasibility for monitoring tumor radiotherapy: A quadruple tracer study with fluorine-18-fluorodeoxyglucose or fluorine- 18-fluorodeoxyuridine, l-[methyl-14C]methionine, [6-3H]thymidine, and gallium-67.J Nucl Med 1991; 32:2118–2123.

    PubMed  CAS  Google Scholar 

  2. Tjuvajev J, Muraki A, Ginos J, et al. Iododeoxyuridine uptake and retention as a measure of tumor growth.J Nucl Med 1993; 34: 1152–1162.

    PubMed  CAS  Google Scholar 

  3. Strauss LG, Conti PS. The application of PET in clinical oncology.J Nucl Med 1991; 32: 623–648.

    PubMed  CAS  Google Scholar 

  4. Ohtsuki K, Akashi K, Aoka Y, et al. Technetium-99m HYNIC-annexin V: a potential radiopharmaceutical for thein-vivo detection of apoptosis.Eur J Nucl Med 1999; 26 (10): 1251–1258.

    Article  PubMed  CAS  Google Scholar 

  5. Vriens PW, Blankenberg FG, Stoot JH, et al. The use of technetium99mTc annexin V forin vivo imaging of apoptosis during cardiac allograft rejection.J Thorac Cardiovasc Surg 1998; 116:844–853.

    Article  PubMed  CAS  Google Scholar 

  6. Van Nerom CG, Bormans GM, De Roo MJ, et al. First experience in healthy volunteers with technetium-99m l,l- ethylenedicysteine, a new renal imaging agent.Eur J Nucl Med 1993;20:738–746.

    Article  PubMed  Google Scholar 

  7. Canet EP, Casali C, Desenfant A, et al. Kinetic characterization of CMD-A2-Gd-DOTA as an intravascular contrast agent for myocardial perfusion measurement with MRI.Magn Reson Med 2000; 43 (3): 403–409.

    Article  PubMed  CAS  Google Scholar 

  8. Laissy JP, Faraggi M, Lebtahi R, et al. Functional evaluation of normal and ischemic kidney by means of gado-linium-DOTA enhanced TurboFLASH MR imaging: a preliminary comparison with99mTc-MAG3 dynamic scin-tigraphy.Magn Reson Imaging 1994; 12 (3): 413–419.

    Article  PubMed  CAS  Google Scholar 

  9. Kao CH, ChangLai SP, Chieng PU, et al. Technetium-99m methoxyisobutylisonitrile chest imaging of small cell lung carcinoma: relation to patient prognosis and chemotherapy response—a preliminary report.Cancer 1998; 83: 64–68.

    Article  PubMed  CAS  Google Scholar 

  10. Wu HC, Chang CH, Lai MM, et al. Using Tc-99m DMSA renal cortex scan to detect renal damage in women with type 2 diabetes.J Diabetes Complications 2003; 17: 297–300.

    Article  PubMed  Google Scholar 

  11. Zareneyrizi F, Yang DJ, Oh CS, et al. Synthesis of99mTc-ethylenedicysteine-colchicine for evaluation of antiangio-genic effect.Anticancer Drugs 1999: 10: 685–692.

    Article  PubMed  CAS  Google Scholar 

  12. Yang DJ, Azhdarinia A, Wu P, et al.In vivo andin vitro measurement of apoptosis in breast cancer cells using99mTc-EC-annexin V.Cancer Biother Ratiopharm 2001:16: 73–83.

    Article  Google Scholar 

  13. Yang DJ, Kim KD, Schechter NR, et al. Assessment of antiangiogenic effect using99mTc-EC-endostatin.Cancer Biother Radiopharm 2002: 17: 233–245.

    Article  PubMed  CAS  Google Scholar 

  14. Schechter NR, Yang DJ, Azhdarinia A, et al. Assessment of epidermal growth factor receptor with99mTc-ethylene-dicysteine-C225 monoclonal antibody.Anticancer Drugs 2003: 14: 49–56.

    Article  PubMed  CAS  Google Scholar 

  15. Yang DJ, Kim CG, Schechter NR, et al. Imaging with99mTc ECDG targeted at the multifunctional glucose transport system: feasibility study with rodents.Radiology 2003:226: 465–473.

    Article  PubMed  Google Scholar 

  16. Ilgan S, Yang DJ, Higuchi T, et al.99mTc-Ethylenedicysteine- Folate: A new tumor imaging agent. Synthesis, labeling and evaluation in animals.Cancer Biotherapy and Radiopharm 1998: 13:427–435.

    Article  CAS  Google Scholar 

  17. Song HC, Bom HS, Cho KH, et al. Prognostication of recovery in patients with acute ischemic stroke using brain SPECT with99mTc-metronidazole.Stroke 2003: 34: 982–986.

    Article  PubMed  Google Scholar 

  18. Yang DJ, Bryant J, Chang JY, et al. Assessment of COX-2 expression with99mTc-labeled Celebrex.Anti-Cancer Drugs 2004: 15: 255–263.

    Article  PubMed  CAS  Google Scholar 

  19. Zheng YY, Saluja S, Yap GP, et al. Gallium and Indium Complexes of Bis(amino thiol) (N(2)S(2)) Ligands.Inorg Chem 1996: 35: 6656–6666.

    Article  PubMed  CAS  Google Scholar 

  20. Anderson CJ, John CS, Li YJ, et al. N,N′-ethylene-di-l.- cysteine (EC) complexes of Ga(III) and In(III): molecular modeling, thermodynamic stability andin vivo studies.Nucl Med Biol 1995: 22: 165–173.

    Article  PubMed  CAS  Google Scholar 

  21. Sun Y, Anderson CJ, Pajeau TS, et al. Indium (III) and gallium (III) complexes of bis(aminoethanethiol) ligands with different denticities: stabilities, molecular modeling, andin vivo behavior.J Med Chem 1996: 39: 458–470.

    Article  PubMed  CAS  Google Scholar 

  22. Sanchez-Crespo A, Andreo P, Larsson SA. Positron flight in human tissues and its influence on PET image spatial resolution.Eur J Nucl Med Mol Imaging 2004; 31: 44–51.

    Article  PubMed  Google Scholar 

  23. Grove NB, Martin MJ. Log-f tables for beta decay.Nucl Data Tables 1971; 205.

  24. Motekaitis RJ. The Gallium (III) and Indium (III) Complexes of Tris (2-mercapto benzyl) amine and Tris (2-hydroxylbenzyl) amine.Inorg Chem 1998; 37: 5902–5911.

    Article  CAS  Google Scholar 

  25. Reichert DE, Hancock RD, Welch MJ. Molecular Mechanics Investigation of Gadolinium(III) Complexes.Inorg Chem 1996; 35: 7013–7020.

    Article  PubMed  CAS  Google Scholar 

  26. Mathias CJ, Lewis MR, Reichert DE, et al. Preparation of66Ga- and68Ga-labeled Ga(III)-deferoxamine-folate as potential folate-receptor-targeted PET radiopharmaceuticals.Nucl Med Biol 2003; 30: 725–731.

    Article  PubMed  CAS  Google Scholar 

  27. Denmeade SR, Isaacs JT. Programmed cell death (apoptosis) and cancer chemotherapy: Cancer Control.Cancer Control 1996; 3 (4): 1996.

    Google Scholar 

  28. Garzetti GG, Ciavattini A, Provincial M, et al. Expression of p53 and apoptosis of tumor cells in locally advanced cervical carcinoma after cisplatin based neoadjuvant chemotherapy.Anticancer Res 1996; 16: 3229–3224.

    PubMed  CAS  Google Scholar 

  29. Wheeler JA, Stephens LC, Tornos C, et al. ASTRO research fellowship: apoptosis as a predictor of tumor response to radiation in stage IB cervical carcinoma.Int J Rad Oncol Biol Phys 1995; 32 (5): 1487–1493.

    CAS  Google Scholar 

  30. Meyn RE, Stephens LC, Hunter NR, et al. Induction of apoptosis in murine tumors by cyclophosphamide.Cancer Chem Pharm 1994; 33: 410–414.

    Article  CAS  Google Scholar 

  31. Meyn RE, Stephens LC, Hunter NR, et al. Kinetics of cisplatin-induced apoptosis in murine mammary and ovarian adenocarcinomas.Int J Cancer 1995; 60: 725–729.

    Article  PubMed  CAS  Google Scholar 

  32. Meyn RE, Stephens LC, Hunter NR, et al. Apoptosis in murine tumors treated with chemotherapy agents.Anti-Cancer Drugs 1995; 6: 443–450.

    Article  PubMed  CAS  Google Scholar 

  33. Meyn RE, Stephens LC, Mason KA, et al. Radiation-induced apoptosis in normal and pre-neoplastic mammary glandsin vivo: Significance of gland differentiation and p53 status.Int J Cancer 1996; 65: 466–472.

    Article  PubMed  CAS  Google Scholar 

  34. Buchholz TA, Davis DW, McConkey DJ, et al. Chemotherapy-induced apoptosis and Bcl-2 levels correlate with breast cancer response to chemotherapy.Cancer J 2003; 9 (1): 33–41.

    Article  PubMed  CAS  Google Scholar 

  35. Symmans WF, Volm MD, Shapiro RL, et al. Paclitaxel-induced apoptosis and mitotic arrest assessed by serial fine-needle aspiration: implications for early prediction of breast cancer response to neoadjuvant treatment.Clin Cancer Res 2000; 6 (12): 4610–4617.

    PubMed  CAS  Google Scholar 

  36. Ueno T, Toi M, Bivén K, et al. Measurement of an apoptosis product in the sera of breast cancer patients.Eur J Cancer 2003; 39: 769–774.

    Article  PubMed  CAS  Google Scholar 

  37. Okada J, Yoshihawa K, Itami M, et al. Positron emission tomography using fluorine-18-fluorodeoxyglucose in malignant lymphoma: A comparison with proliferative activity.J Nucl Med 1992; 33: 325–329.

    PubMed  CAS  Google Scholar 

  38. Higashi K, Clavo AC, Wahl RL. Does FDG uptake measure proliferative activity of human cancer cells?In vitro comparision with DNA flow cytometry and tritiated thymi-dine uptake.J Nucl Med 1992; 34: 414–419.

    Google Scholar 

  39. McConathy J, Martarello L, Malveaux EJ, et al. Synthesis and evaluation of 2-amino-4-[(18)F]fluoro-2-methyl-butanoic acid (FAMB): relationship of amino acid transport to tumor imaging properties of branched fluorinated amino acids.Nucl Med Biol 2003; 30: 477–190.

    Article  PubMed  CAS  Google Scholar 

  40. Jager PL, Plaat BE, de Vries EG, et al. Imaging of soft-tissue tumors using l-3-[iodine-123]iodo-alpha-methyl-tyrosine single photon emission computed tomography: comparison with proliferative and mitotic activity, cellularity, and vas-cularity.Clin Cancer Res 2000; 6: 2252–2259.

    PubMed  CAS  Google Scholar 

  41. Tjuvajev JG, Doubrovin M, Akhurst T, et al. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1 -tk gene expression.J Nucl Med 2002; 43: 1072–1083.

    PubMed  Google Scholar 

  42. Namavari M, Barrio JR, Toyokuni T, et al. Synthesis of 8- [18F]fluoroguanine derivatives:in vivo probes for imaging gene expression with positron emission tomography.Nucl Med Biol 2000; 27: 157–162.

    Article  PubMed  CAS  Google Scholar 

  43. Gambhir SS, Bauer E, Black ME, et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography.Proc Natl Acad Sci USA 2000; 97: 2785–2790.

    Article  PubMed  CAS  Google Scholar 

  44. Iyer M, Barrio JR, Namavari M, et al. 8-[18F]Fluoro-penciclovir: an improved reporter probe for imaging HSV1-tk reporter gene expressionin vivo using PET.J Nucl Med 2001;42:96–105.

    PubMed  CAS  Google Scholar 

  45. Alauddin MM, Shahinian A, Kundu RK, et al. Evaluation of 9-[(3-18F-fluoro-l-hydroxy-2-propoxy)methyl]guanine ([18F]-FHPG)in vitro andin vivo as a probe for PET imaging of gene incorporation and expression in tumors.Nucl Med Biol 1999; 26: 371–376.

    Article  PubMed  CAS  Google Scholar 

  46. Yaghoubi S, Barrio JR, Dahlbom M, et al. Human pharma-cokinetic and dosimetry studies of [18F]FHBG: a reporter probe for imaging herpes simplex virus type-1 thymidine kinase reporter gene expression.J Nucl Med 2001; 42:1225–1234.

    PubMed  CAS  Google Scholar 

  47. Goethals P, Eijkeren MV, Lodewyck W, et al. Measurement of [methyl-carbon-1 l]thymidine and its metabolites in head and neck tumors.J Nucl Med 1995; 36: 880–882.

    PubMed  CAS  Google Scholar 

  48. Tjuvajev J, Macapinlac HA, Daghighian F, et al. Imaging of brain tumor proliferative activity with iodine-131-iodo-deoxyuridine.J Nucl Med 1994; 35: 1407–1417.

    PubMed  CAS  Google Scholar 

  49. Abe Y, Fukuda H, Ishiwata K, et al. Studies on18F-Labeled Pyrimidines Tumor Uptakes of18F-5-Fluorouracil,18F-5- Fluorouridine, and18F-5-Fluorodeoxyuridine in Animals.EurJ Nucl Med 1983; 8: 258–261.

    Article  CAS  Google Scholar 

  50. Kim CG, Yang DJ, Kim EE, et al. Assessment of tumor cell proliferation using [18F]fluorodeoxyadenosine and [18F]fluoroethyluracil.J Pharm Sci 1996; 85: 339–344.

    Article  PubMed  CAS  Google Scholar 

  51. Buck AK, Halter G, Schirrmeister H, et al. Imaging Proliferation in Lung Tumors with PET:18F-FLT Versus18F-FDG.J Nucl Med 2003; 44: 1426–1431.

    PubMed  CAS  Google Scholar 

  52. Francis DL, Visvikis D, Costa DC, et al. Potential impact of [18F]3′-deoxy-3′-fluorothymidine versus [18F]fluoro-2-deoxy-d-glucose in positron emission tomography for colorectal cancer.Eur J Nucl Med Mol Imaging 2003; 30:988–994.

    Article  PubMed  CAS  Google Scholar 

  53. Marquez VE, Tseng CKH, Mitsuya H, et al. Acid-stable 2′- fluoro purine dideoxynucleosides as active agents against HIV.J Med Chem 1990; 33: 978–985.

    Article  PubMed  CAS  Google Scholar 

  54. Wright JA, Taylor NF, Fox JJ. Nucleosides. LX. Fluorocarbohydrates. synthesis of 2-deoxy-2-fluoro-d-arabinose and 9-(2-deoxy-2-fluoro-α- and -ß-d-arabino-furanosyl)-adenines.J Org Chem 1969; 34: 2632–263?.

    Article  PubMed  CAS  Google Scholar 

  55. Uesugi S, Kaneyasu T, Ikehara M. Synthesis and properties of ApU Analogues containing 2′-halo-2′-deoxyadenosine. Effect of 2′ substituents on oligonucleotide conformation.Biochemistry 1982; 21: 5870–5877.

    Article  PubMed  CAS  Google Scholar 

  56. Ikehara M, Miki H. Studies of nucleosides and nucleotides. Cyclonucleosides. Synthesis and properties of 2′-halogeno-2′-deoxyadenosines.Chem Pharm Bul 1978; 26: 2449–2453.

    CAS  Google Scholar 

  57. Chao KC, Yang DJ, Yang T, Azhdarinia A. Assessment of DNA/RNA proliferation using radiolabeled guanine analogues by PET and SPECT.Molecular Imaging and Biology 2004; 6 (2): 107. (abstract)

    Google Scholar 

  58. Bertolini F, Paolucci M, Peccatori F, et al. Angiogenic growth factors and endostatin in non-Hodgkin’s lymphoma.Br J Haematol 1999; 106: 504–509.

    Article  PubMed  CAS  Google Scholar 

  59. Smith BD, Smith GL, Carter D,et al. Prognostic significance of vascular endothelial growth factor protein levels in oral and oropharyngeal squamous cell carcinoma.J Clin Oncol 2000; 18:2046–2052.

    PubMed  CAS  Google Scholar 

  60. Feltis BA, Sahar DA, Kim AS, Saltzman DA, Leonard AS, Sielaff TD. Cyclooxygenase-2 inhibition augments the hepatic antitumor effect of oral salmonella typhimurium in a model of mouse metastatic colon cancer.Dis Colon Rectum 2002; 45: 1023–1028.

    Article  PubMed  Google Scholar 

  61. Decatris M, Santhanam S, O’Byrne K. Potential of Inter-feron-alpha in Solid Tumours: Part 1.BioDrugs 2002; 16:261–281.

    Article  PubMed  CAS  Google Scholar 

  62. Baselga J, Albaneil J. Targeting epidermal growth factor receptor in lung cancer.Curr Oncol Rep 2002; 4: 317–324.

    Article  PubMed  Google Scholar 

  63. Herbst RS, Shin DM. Monoclonal antibodies to target epidermal growth factor receptor-positive tumors: a new paradigm for cancer therapy.Cancer 2002; 94: 1593–1611.

    Article  PubMed  CAS  Google Scholar 

  64. Alshafie GA, Abou-Issa HM, Seibert K, Harris RE. Chemo-therapeutic evaluation of Celecoxib, a cyclooxygenase-2 inhibitor, in a rat mammary tumor model.Oncol Rep 2000;7: 1377–1381.

    PubMed  CAS  Google Scholar 

  65. Waxman ES, Herbst RS. The role of the epidermal growth factor receptor in the treatment of colorectal carcinoma.Semin Oncol Nurs 2002; 18: 20–29.

    Article  PubMed  Google Scholar 

  66. Ciardiello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor.Clin Cancer Res 2001; 7: 2958–2970.

    PubMed  CAS  Google Scholar 

  67. Yang DJ, Ilgan, S, Higuchi T, et al. Noninvasive assessment of tumor hypoxia with99mTc-labeled metronidazole.Pharm Res 1999; 16:743–750.

    Article  PubMed  CAS  Google Scholar 

  68. Yang DJ, Yukihiro M, Oh C-S, et al. Assessment of Therapeutic Tumor Response Using99mTc-Ethylenedicysteine-Glucosamine.Cancer Biotherapy and Radiopharm 2004;19 (4): 444–458.

    Google Scholar 

  69. Marshall S, Bacote V, Traxinger RR. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system.J Biol Chem 1991; 266:4706–4712.

    PubMed  CAS  Google Scholar 

  70. Wells L, Gao Y, Mahoney JA, et al. Dynamic O-glycosyl-ation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic beta-N-acetylgluco-saminidase, O-GlcNAcase.J Biol Chem 2002; 277:1755–1761.

    Article  PubMed  CAS  Google Scholar 

  71. Pal S, Claffey KP, Cohen HT, Mukhopadhyay D. Activation of Spl-mediated vascular permeability factor/vascular endothelial growth factor transcription requires specific interaction with protein kinase C zeta.J Biol Chem 1998;273: 26277–26280.

    Article  PubMed  CAS  Google Scholar 

  72. Black AR, Black JD, Azizkhan-Clifford J. Spl and kruppel-like factor family of transcription factors in cell growth regulation and cancer.J Cell Physiol 2001; 188: 143–160.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, D.J., Kim, E.E. & Inoue, T. Targeted molecular imaging in oncology. Ann Nucl Med 20, 1–11 (2006). https://doi.org/10.1007/BF02985584

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02985584

Key words

Navigation