Skip to main content

Radiopharmaceuticals for Imaging in Oncology with Special Emphasis on Positron-Emitting Agents

  • Chapter
  • First Online:
Nuclear Oncology

Abstract

Over the past twenty years, nuclear imaging has arguably had more impact on oncology than any other field of medicine, particularly due to the ability of nuclear imaging to provide functional information about tumors rather than anatomical images alone. As a result, the design, synthesis, and development of cancer-targeted radiopharmaceuticals, particularly those for positron emission tomography (PET), have become areas of significant and intense investigation. A wide variety of factors must be considered in the design and synthesis of a novel, effective cancer-targeted radiopharmaceutical, including the choice of a cancer-specific molecular target capable of producing high tumor-to-background contrast, the creation of a targeting molecule able to bind the target with high specificity and affinity, the selection of a radioisotope appropriate for the pharmacokinetics of the targeting molecule, the methodology for incorporating the radiolabel into the targeting molecule, and the synthetic strategy for radiolabeling the targeting molecule. By a wide margin, the most commonly employed PET tracer in oncology is [18F]-fluorodeoxyglucose ([18F]FDG), an FDA-approved radiopharmaceutical that concentrates in tumors due to the tendency of many neoplasms to possess up-regulated glycolytic pathways and over-expressed glucose transporters. However, [18F]FDG is far from the only cancer-targeted PET agent: a large number of effective radiopharmaceuticals have been developed to target other differences between neoplastic and normal tissue. Indeed, radiopharmaceuticals have been created to target over-expressed cell surface biomarkers (e.g. HER2/neu or PSMA), up-regulated processes in tumor cells (e.g. nucleic acid metabolism or amino acid transport), and traits of the tumor microenvironment (e.g. acidosis or hypoxia). In the following chapter, the fundamental principles of the design, synthesis, and development of small molecule, peptidic, and antibody-based radiopharmaceuticals will be presented along with a wide-ranging review of the most promising emerging cancer-targeted PET and SPECT imaging agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rudin M, Weissleder R. Molecular imaging in drug discovery and development. Nat Rev Drug Discov. 2003;2:123–31.

    Article  PubMed  CAS  Google Scholar 

  2. Gillies RJ. In vivo molecular imaging. J Cell Biochem. 2002;87:231–8.

    Article  CAS  Google Scholar 

  3. Smith SV. Molecular imaging with copper-64. J Inorg Biochem. 2004;98:1874–901.

    Article  PubMed  CAS  Google Scholar 

  4. Blower P. Towards molecular imaging and treatment of disease with radionuclides: the role of inorganic chemistry. Dalton Trans. 2006;(14):1705–11.

    Google Scholar 

  5. Mettler JFA, Guiberteau MJ. Essentials of nuclear medicine ­imaging. 5th ed. Philadelphia, Pennsylvania, USA: Saunders Elsevier; 2007.

    Google Scholar 

  6. Dilworth JR, Parrott SJ. The biomedical chemistry of technetium and rhenium. Chem Soc Rev. 1998;27:43–55.

    Article  CAS  Google Scholar 

  7. Harper PV, Beck R, Charleston D, Lathrop KA. Mo/Tc generator. Nucleonics. 1964;22:1137.

    Google Scholar 

  8. Marsden PK. Detector technology challenges for nuclear medicine and PET. Nucl Instrum Meth Phys Res. 2003;513:1–7.

    Article  CAS  Google Scholar 

  9. Brownell GL, Sweet WH. Localization of brain tumors with ­positron emitters. Nucleonics. 1953;11:40–5.

    Google Scholar 

  10. Sweet WH. The use of nuclear disintegration in the diagnosis and treatment of brain tumor. N Engl J Med. 1951;245:875–8.

    Article  PubMed  CAS  Google Scholar 

  11. Wrenn Jr FR, Good ML, Handler P. The use of positron-emitting radioisotopes for the localization of brain tumors. Science. 1951;113:525–7.

    Article  PubMed  CAS  Google Scholar 

  12. Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA. 2000;97:9226–33.

    Article  PubMed  CAS  Google Scholar 

  13. Bushberg JT, Seibert JA, Leidholdt EW, Boone JM. The essential physics of medical imaging. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  14. Marsden PK. Quantification in PET: what is it? Can we do it? Do we need it? Nucl Med Commun. 2004;25:635–6.

    Article  PubMed  Google Scholar 

  15. Wiebe LI. PET radiopharmaceuticals for metabolic imaging in oncology. Int Congr. 2004;1264:53–76.

    Article  CAS  Google Scholar 

  16. Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA. A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med. 1999;26:22–30.

    Article  PubMed  CAS  Google Scholar 

  17. Somer Edward JR, Marsden Paul K, Benatar Nigel A, Goodey J, O’Doherty Michael J, Smith Michael A. PET-MR image fusion in soft tissue sarcoma: accuracy, reliability and practicality of interactive point-based and automated mutual information techniques. Eur J Nucl Med Mol Imaging. 2003;30:54–62.

    Article  PubMed  CAS  Google Scholar 

  18. Quon A, Napel S, Beaulieu Christopher F, Gambhir Sanjiv S. “Flying through” and “flying around” a PET/CT scan: pilot study and development of 3D integrated 18F-FDG PET/CT for virtual bronchoscopy and colonoscopy. J Nucl Med. 2006;47:1081–7.

    PubMed  Google Scholar 

  19. Somer E, Benatar N, O’Doherty M, Smith M, Marsden P. Use of the CT component of PET/CT to improve PET/MR registration: demonstration in soft-tissue sarcoma. Phys Med Biol. 2007;52:6991–7006.

    Article  PubMed  Google Scholar 

  20. Stanford M-MIPa. Medical Imaging Program at Stanford. Stanford University, Palo Alto, CA.

    Google Scholar 

  21. Welch MJ, Redvanly CS, editors. Handbook of radiopharmaceuticals: radiochemistry and applications. Chichester: Wiley; 2003.

    Google Scholar 

  22. Katzenellenbogen JA. Designing steroid receptor-based radiotracers to image breast and prostate tumors. J Nucl Med. 1995;36:8S–13S.

    PubMed  CAS  Google Scholar 

  23. Boswell CA, Brechbiel MW. Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nucl Med Biol. 2007;34:757–78.

    Article  PubMed  CAS  Google Scholar 

  24. Hermanson GT. Bioconjugate techniques. London: Academic, Elsevier; 2008.

    Google Scholar 

  25. Nayak TK, Brechbiel MW. Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges. Bioconjug Chem. 2009;20:825–41.

    Article  PubMed  CAS  Google Scholar 

  26. Brechbiel MW. Bifunctional chelates for metal nuclides. Q J Nucl Med Mol Imaging. 2008;52:166–73.

    PubMed  CAS  Google Scholar 

  27. Volkert WA, Hoffman TJ. Therapeutic radiopharmaceuticals. Chem Rev. 1999;99:2269–92.

    Article  PubMed  CAS  Google Scholar 

  28. Verel I, Visser GWM, Boellaard R, Stigter-van Walsum M, Snow GB, van Dongen GAMS. 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med. 2003;44:1271–81.

    PubMed  CAS  Google Scholar 

  29. Meijs WE, Haisma HJ, Van der Schors R, et al. A facile method for the labeling of proteins with zirconium isotopes. Nucl Med Biol. 1996;23:439–48.

    Article  PubMed  CAS  Google Scholar 

  30. Meijs WE, Herscheid JDM, Haisma HJ, Pinedo HM. Evaluation of desferal as a bifunctional chelating agent for labeling antibodies with Zr-89. Appl Radiat Isot. 1992;43:1443–7.

    Article  CAS  Google Scholar 

  31. Holland JP, Sheh Y, Lewis JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol. 2009;36:729–39.

    Article  PubMed  CAS  Google Scholar 

  32. Katzenellenbogen JA. The pharmacology of steroid radiopharmaceuticals: specific and non-specific binding and uptake selectivity. In: Nunn AD, editor. Radiopharmaceuticals: chemistry and pharmacology. New York: Marcel Dekker, Inc; 1992. p. 297–331.

    Google Scholar 

  33. Gao H, Katzenellenbogen JA, Garg R, Hansch C. Comparative QSAR analysis of estrogen receptor ligands. Chem Rev. 1999;99:723–44.

    Article  PubMed  CAS  Google Scholar 

  34. Katzenellenbogen JA, Heiman DF, Carlson KE, Lloyd JE. In vivo and in vitro steroid receptor assays in the design of estrogen radiopharmaceuticals. In: Eckelman WC, editor. Receptor-binding radiotracers. Boca Raton: CRC; 1982. p. 93–126.

    Google Scholar 

  35. Francesconi LF, Cantorias MV, Howell RC. Metal-based imaging agents. In: King RB, editor. Encyclopedia of inorganic chemistry. 2nd ed. Chichester: Wiley; 2006. p. 3020–40.

    Google Scholar 

  36. Katzenellenbogen JA. Receptor imaging of tumors (non-peptide). In: Welch MJ, Redvanly CS, editors. Handbook of radiopharmaceuticals. Chichester: Wiley; 2003. p. 715–50.

    Google Scholar 

  37. Gallagher BM, Ansari A, Atkins H, et al. Radiopharmaceuticals 27. F-18-labeled 2-deoxy-2-fluoro-d-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo—tissue distribution and imaging studies in animals. J Nucl Med. 1977;18:990–6.

    PubMed  CAS  Google Scholar 

  38. Ido T, Wan CN, Casella V, et al. Labeled 2-deoxy-d-gluocose analogs—F-18-labeled 2-deoxy-2-fluoro-d-glucose, 2-deoxy-2-fluoro-d-mannose, and C-14-2-deoxy-2-fluoro-d-glucose. J Label Compd Radiopharm. 1978;14:175–83.

    Article  CAS  Google Scholar 

  39. Dotzel MM. Federal register. In: United States Department of Health and Human Services, editor. 2000. 12999–3010.

    Google Scholar 

  40. Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology. 2004;231:305–32.

    Article  PubMed  Google Scholar 

  41. Plathow C, Weber WA. Tumor cell metabolism imaging. J Nucl Med. 2008;49:43S–63S.

    Article  PubMed  CAS  Google Scholar 

  42. Warburg O, Posener K, Negelein E. Ueber den stoffwechsel von carcinomzelle. Biochem Z. 1924;152:309–35.

    CAS  Google Scholar 

  43. Gillies RJ, Robey I, Gatenby RA. Causes and consequences of increased glucose metabolism of cancers. J Nucl Med. 2008;49:24S–42S.

    Article  PubMed  CAS  Google Scholar 

  44. Altenberg B, Greulich KO. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics. 2004;84:1014–20.

    Article  PubMed  CAS  Google Scholar 

  45. Kim JW, Dang CV. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res. 2006;66:8927–30.

    Article  PubMed  CAS  Google Scholar 

  46. Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005;202:654–62.

    Article  PubMed  CAS  Google Scholar 

  47. Chesney J. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and tumor cell glycolysis. Curr Opin Clin Nutr Metab Care. 2006;9:535–9.

    Article  PubMed  CAS  Google Scholar 

  48. Pauwels EKJ, Sturm EJC, Bombardieri E, Cleton FJ, Stokkel MPM. Positron-emission tomography with [F-18]fluorodeoxyglucose Part I. Biochemical uptake mechanism and its implication for clinical studies. J Cancer Res Clin Oncol. 2000;126:549–59.

    Article  PubMed  CAS  Google Scholar 

  49. Voet D, Judith G, Pratt CW. Fundamentals of biochemistry: life at the molecular level. Hoboken: Wiley; 2008.

    Google Scholar 

  50. Caraco C, Aloj L, Eckelman WC. Retention of FDG in cancer cells: the role of glucose-6-phosphatase. J Nucl Med. 1997;38:1048.

    Google Scholar 

  51. Kostakoglu L, Agress H, Goldsmith SJ. Clinical role of FDG PET in evaluation of cancer patients. Radiographics. 2003;23:315–40.

    Article  PubMed  Google Scholar 

  52. Kostakoglu L, Wong JCH, Barrington SF, Cronin BF, Dynes AM, Maisey MN. Speech-related visualization of laryngeal muscles with fluorine-18-FDG. J Nucl Med. 1996;37:1771–3.

    PubMed  CAS  Google Scholar 

  53. Park YH, Baik JH, Ahn MI, Kim JY. FDG uptake in the diaphragm and crura, vocal cords, and base of tongue in a crying child. Clin Nucl Med. 2005;30:752–3.

    Article  PubMed  Google Scholar 

  54. Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics. 1999;19:61–77.

    PubMed  CAS  Google Scholar 

  55. Khandani AH, Whitney KD, Keller SM, Isasi CR, Blaufox MD. Sensitivity of FDG PET, GLUT1 expression and proliferative index in bronchioloalveolar lung cancer. Nucl Med Commun. 2007;28:173–7.

    Article  PubMed  Google Scholar 

  56. Hicks RJ. Beyond FDG: novel PET tracers for cancer imaging. Cancer Imaging. 2003;4(1):22–4.

    Article  PubMed  Google Scholar 

  57. Bakheet SM, Saleem M, Powe J, Al Amro A, Larsson SG, Mahassin Z. F-18 fluorodeoxyglucose chest uptake in lung inflammation and infection. Clin Nucl Med. 2000;25:273–8.

    Article  PubMed  CAS  Google Scholar 

  58. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo—high accumulation in macrophages and granulation ­tissues studied by microautoradiography. J Nucl Med. 1992;33:1972–80.

    PubMed  CAS  Google Scholar 

  59. Ruers TJM, Langenhoff BS, Neeleman N, et al. Value of positron emission tomography with [F-18]fluorodeoxyglucose in patients with colorectal liver metastases: a prospective study. J Clin Oncol. 2002;20:388–95.

    Article  PubMed  CAS  Google Scholar 

  60. Kubota K. From tumor biology to clinical PET: a review of positron emission tomography (PET) in oncology. Ann Nucl Med. 2001;15:471–86.

    Article  PubMed  CAS  Google Scholar 

  61. Castell F, Cook GJR. Quantitative techniques in 18FDG PET scanning in oncology. Br J Cancer. 2008;98:1597–601.

    Article  PubMed  CAS  Google Scholar 

  62. Thie JA. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med. 2004;45:1431–4.

    PubMed  Google Scholar 

  63. Romer W, Hanauske AR, Ziegler S, et al. Positron emission tomography in non-Hodgkin’s lymphoma: assessment of chemotherapy with fluorodeoxyglucose. Blood. 1998;91:4464–71.

    PubMed  CAS  Google Scholar 

  64. Gambhir SS, Czernin J, Schwimmer J, Silverman DHS, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med. 2001;42:1S–93S.

    PubMed  CAS  Google Scholar 

  65. Brink I, Schumacher T, Mix M, et al. Impact of [F-18]FDG-PET on the primary staging of small-cell lung cancer. Eur J Nucl Med Mol Imaging. 2004;31:1614–20.

    Article  PubMed  CAS  Google Scholar 

  66. de Geus-Oei LF, Oyen LJG. Predictive and prognostic value of FDG-PET. Cancer Imaging. 2008;8:70–80.

    Article  PubMed  Google Scholar 

  67. Quon A, Gambhir SS. FDG-PET and beyond: molecular breast cancer imaging. J Clin Oncol. 2005;23:1664–73.

    Article  PubMed  CAS  Google Scholar 

  68. Fletcher JW, Djulbegovic B, Soares HP, et al. Recommendations on the use of F-18-FDG PET in oncology. J Nucl Med. 2008;49:480–508.

    Article  PubMed  Google Scholar 

  69. Cavallaro U, Christofori G. Molecular mechanisms of tumor angiogenesis and tumor progression. J Neurooncol. 2000;50:63–70.

    Article  PubMed  CAS  Google Scholar 

  70. Vailhe B, Vittet D, Feige JJ. In vitro models of vasculogenesis and angiogenesis. Lab Invest. 2001;81:439–52.

    Article  PubMed  CAS  Google Scholar 

  71. Niu G, Chen X. PET imaging of angiogenesis. PET Clin. 2009;4:17–38.

    Article  PubMed  Google Scholar 

  72. Risau W. Mechanisms of angiogenesis. Nature. 1997;386:671–4.

    Article  PubMed  CAS  Google Scholar 

  73. Folkman J, Bach M, Rowe JW, et al. Tumor angiogenesis—therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  PubMed  CAS  Google Scholar 

  74. van der Veldt AAM, Luurtsema G, Lubberink M, Lammertsma AA, Hendrikse NH. Individualized treatment planning in oncology: role of PET and radiolabelled anticancer drugs in predicting tumour resistance. Curr Pharm Des. 2008;14:2914–31.

    Article  PubMed  Google Scholar 

  75. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25:581–611.

    Article  PubMed  CAS  Google Scholar 

  76. Cai WB, Chen XY. Multimodality molecular imaging of tumor angiogenesis. J Nucl Med. 2008;49:113S–28S.

    Article  PubMed  CAS  Google Scholar 

  77. Cai W, Chen K, Mohamedali KA, et al. PET of vascular endothelial growth factor receptor expression. J Nucl Med. 2006;47:2048–56.

    PubMed  CAS  Google Scholar 

  78. Jayson GC, Zweit J, Jackson A, et al. Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst. 2002;94:1484–93.

    Article  PubMed  CAS  Google Scholar 

  79. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–87.

    Article  PubMed  CAS  Google Scholar 

  80. Lewis MR. Radiolabeled RGD peptides move beyond cancer: PET imaging of delayed-type hypersensitivity reaction. J Nucl Med. 2005;46:2–4.

    PubMed  Google Scholar 

  81. Beer AJ, Haubner R, Goebel M, et al. Biodistribution and pharmacokinetics of the [alpha] v [beta]3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med. 2005;46:1333–41.

    PubMed  CAS  Google Scholar 

  82. Machac J. Cardiac positron emission tomography imaging. Semin Nucl Med. 2005;35:17–36.

    Article  PubMed  Google Scholar 

  83. Saha GB, Macintyre WJ, Go RT. Radiopharmaceuticals for brain imaging. Semin Nucl Med. 1994;24:324–49.

    Article  PubMed  CAS  Google Scholar 

  84. Schuster DP. The evaluation of lung function with PET. Semin Nucl Med. 1998;28:341–51.

    Article  PubMed  CAS  Google Scholar 

  85. Anderson H, Price P. Clinical measurement of blood flow in tumours using positron emission tomography: a review. Nucl Med Commun. 2002;23:131–8.

    Article  PubMed  CAS  Google Scholar 

  86. Bacharach SL, Libutti SK, Carrasquillo JA. Measuring tumor blood flow with (H2O)-O-15: practical considerations. Nucl Med Biol. 2000;27:671–6.

    Article  PubMed  CAS  Google Scholar 

  87. Bruehlmeier M, Roelcke U, Schubiger PA, Ametamey SM. Assessment of hypoxia and perfusion in human brain tumors using PET with F-18-fluoromisonidazole and O-15-H2O. J Nucl Med. 2004;45:1851–9.

    PubMed  Google Scholar 

  88. Lassen U, Andersen P, Daugaard G, et al. Metabolic and hemodynamic evaluation of brain metastases from small cell lung cancer with positron emission tomography. Clin Cancer Res. 1998;4:2591–7.

    PubMed  CAS  Google Scholar 

  89. Beaney RP, Jones T, Lammertsma AA, McKenzie CG, Halnan KE. Positron emission tomography for in vivo measurement of regional blood-flow, oxygen utilization, and blood-volume in patients with breast carcinoma. Lancet. 1984;1:131–4.

    Article  PubMed  CAS  Google Scholar 

  90. Hentschel M, Paulus T, Mix M, Moser E, Nitzsche EU, Brink I. Analysis of blood flow and glucose metabolism in mammary carcinomas and normal breast: a (H2O)-O-15 PET and F-18-FDG PET study. Nucl Med Commun. 2007;28:789–97.

    Article  PubMed  CAS  Google Scholar 

  91. Wilson C, Lammertsma AA, McKenzie CG, Sikora K, Jones T. Measurements of blood-flow and exchanging water space in breast tumors using positron emission tomography—a rapid and noninvasive dynamic method. Cancer Res. 1992;52:1592–7.

    PubMed  CAS  Google Scholar 

  92. Anderson H, Yap JT, Wells P, et al. Measurement of renal tumour and normal tissue perfusion using positron emission tomography in a phase II clinical trial of razoxane. Br J Cancer. 2003;89:262–7.

    Article  PubMed  CAS  Google Scholar 

  93. Wells P, Jones T, Price P. Assessment of inter- and intrapatient variability in (CO2)-O-15 positron emission tomography measurements of blood flow in patients with intra-abdominal cancers. Clin Cancer Res. 2003;9:6350–6.

    PubMed  Google Scholar 

  94. Yamaguchi A, Taniguchi H, Kunishima S, Koh T, Yamagishi H. Correlation between angiographically assessed vascularity and blood flow in hepatic metastases in patients with colorectal carcinoma. Cancer. 2000;89:1236–44.

    Article  PubMed  CAS  Google Scholar 

  95. Hoekstra CJ, Stroobants SG, Hoekstra OS, Smit EF, Vansteenkiste JF, Lammertsma AA. Measurement of perfusion in stage IIIA-N2 non-small cell lung cancer using (H2O)-O-15 and positron emission tomography. Clin Cancer Res. 2002;8:2109–15.

    PubMed  Google Scholar 

  96. de Langen AJ, Lubberink M, Boellaard R, et al. Reproducibility of tumor perfusion measurements using O-15-labeled water and PET. J Nucl Med. 2008;49:1763–8.

    Article  PubMed  Google Scholar 

  97. de Langen AJ, van den Boogaart VEM, Marcus JT, Lubberink M. Use of (H2O)-O-15-PET and DCE-MRI to measure tumor blood flow. Oncologist. 2008;13:631–44.

    Article  PubMed  Google Scholar 

  98. Herbst RS, Mullani NA, Davis DW, et al. Development of biologic markers of response and assessment of antiangiogenic activity in a clinical trial of human recombinant endostatin. J Clin Oncol. 2002;20:3804–14.

    Article  PubMed  CAS  Google Scholar 

  99. Mankoff DA, Dunnwald LK, Gralow JR, et al. Blood flow and metabolism in locally advanced breast cancer: relationship to response to therapy. J Nucl Med. 2002;43:500–9.

    PubMed  Google Scholar 

  100. Anderson HL, Yap JT, Miller MP, Robbins A, Jones T, Price PM. Assessment of pharmacodynamic vascular response in a phase I trial of combretastatin A4 phosphate. J Clin Oncol. 2003;21:2823–30.

    Article  PubMed  CAS  Google Scholar 

  101. Mathias CJ, Welch MJ, Raichle ME, et al. Evaluation of a potential generator-produced PET tracer for cerebral perfusion imaging—single-pass cerebral extraction measurements and imaging with radiolabeled Cu-PTSM. J Nucl Med. 1990;31:351–9.

    PubMed  CAS  Google Scholar 

  102. Blower PJ, Lewis JS, Zweit J. Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl Med Biol. 1996;23:957–80.

    Article  PubMed  CAS  Google Scholar 

  103. Wallhaus TR, Lacy J, Whang J, Green MA, Nickles RJ, Stone CK. Human biodistribution and dosimetry of the PET perfusion agent copper-62-PTSM. J Nucl Med. 1998;39:1958–64.

    PubMed  CAS  Google Scholar 

  104. Flower MA, Zweit J, Hall AD, et al. Cu-62-PTSM and PET used for the assessment of angiotensin II-induced blood flow changes in patients with colorectal liver metastases. Eur J Nucl Med. 2001;28:99–103.

    Article  PubMed  CAS  Google Scholar 

  105. Mathias CJ, Green MA, Morrison WB, Knapp DW. Evaluation of Cu-PTSM as a tracer of tumor perfusion—comparison with labeled microspheres in a spontaneous canine neoplasms. Nucl Med Biol. 1994;21:83–7.

    Article  PubMed  CAS  Google Scholar 

  106. Mathias CJ, Welch MJ, Perry DJ, et al. Investigation of copper-PTSM as a PET tracer for tumor blood-flow. Nucl Med Biol. 1991;18:807–11.

    CAS  Google Scholar 

  107. Mathias CJ, Bergmann SR, Green MA. Species-dependent binding of copper(II) bis(thiosemicarbazone) radiopharmaceuticals to serum albumin. J Nucl Med. 1995;36:1451–5.

    PubMed  CAS  Google Scholar 

  108. Green MA, Mathias CJ, Willis LR, et al. Assessment of Cu-ETS as a PET radiopharmaceutical for evaluation of regional renal perfusion. Nucl Med Biol. 2007;34:247–55.

    Article  PubMed  CAS  Google Scholar 

  109. Holland JP, Aigbirhio FI, Betts HM, et al. Functionalized bis(thiosemicarbazonato) complexes of zinc and copper: synthetic platforms toward site-specific radiopharmaceuticals. Inorg Chem. 2007;46:465–85.

    Article  PubMed  CAS  Google Scholar 

  110. Bengel FM, Higuchi T, Javadi MS, Lautamaki R. Cardiac positron emission tomography. J Am Coll Cardiol. 2009;54:1–15.

    Article  PubMed  Google Scholar 

  111. Zhang XS, Wu XJ, Zhang Y, Chen WA. N-13-NH3: a selective contrast-enhancing tracer for brain tumor. Nucl Med Commun. 2008;29:1052–8.

    Article  CAS  Google Scholar 

  112. Brown JM. The hypoxic cell: a target for selective cancer therapy-eighteenth Bruce F. Cain memorial award lecture. Cancer Res. 1999;59:5863–70.

    PubMed  CAS  Google Scholar 

  113. Tatum JL, Kelloff GJ, Gillies RJ, et al. Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol. 2006;82:699–757.

    Article  PubMed  CAS  Google Scholar 

  114. Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996;56:4509–15.

    PubMed  CAS  Google Scholar 

  115. Graeber TG, Osmanian C, Jacks T, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature. 1996;379:88–91.

    Article  PubMed  CAS  Google Scholar 

  116. Crabtree HG, Cramer W. Action of radium on cancer cells. I. Effects of hydrocyanic acid, iodoacetic acid and sodium fluoride on the metabolism and transplantability of cancer cells. Proc Roy Soc. 1933;B113:226–38.

    Google Scholar 

  117. Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998;58:1408–16.

    PubMed  CAS  Google Scholar 

  118. Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955;9:539–49.

    Article  PubMed  CAS  Google Scholar 

  119. Gray LH, Conger AD, Ebert M, Hornsey S, Scott OCA. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol. 1953;26:638–48.

    Article  PubMed  CAS  Google Scholar 

  120. Heacock CS, Sutherland RM. Induction characteristics of oxygen regulated proteins. Int J Radiat Oncol Biol Phys. 1986;12:1287–90.

    Article  PubMed  CAS  Google Scholar 

  121. Hodgkiss RJ. Use of 2-nitroimidazoles as bioreductive markers for tumor hypoxia. Anticancer Drug Des. 1998;13:687–702.

    PubMed  CAS  Google Scholar 

  122. Holland JP, Barnard PJ, Collison D, et al. Spectroelectrochemical and computational studies on the mechanism of hypoxia selectivity of copper radiopharmaceuticals. Chemistry. 2008;14:5890–907.

    Article  PubMed  CAS  Google Scholar 

  123. Dearling JLJ, Lewis JS, Mullen GED, Welch MJ, Blower PJ. Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents: structure-activity relationships. J Biol Inorg Chem. 2002;7:249–59.

    Article  PubMed  CAS  Google Scholar 

  124. O’Donoghue JA, Zanzonico P, Pugachev A, et al. Assessment of regional tumor hypoxia using 18F-fluoromisonidazole and 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) positron emission tomography: comparative study featuring microPET imaging, P2 probe measurement, autoradiography, and fluorescent microscopy in the R3327-AT and FaDu rat tumor models. Int J Radiat Oncol Biol Phys. 2005;61:1493–502.

    Article  PubMed  CAS  Google Scholar 

  125. Holland JP, Lewis Jason S, Dehdashti F. Assessing tumor hypoxia by positron emission tomography with Cu-ATSM. Q J Nucl Med Mol Imaging. 2009;53:193–200.

    PubMed  CAS  Google Scholar 

  126. Dehdashti F, Grigsby PW, Lewis JS, Laforest R, Siegel BA, Welch M. Assessing tumor hypoxia in cervical cancer by PET with 60Cu-labeled diacetyl-bis (N4-emthylthiosemicarbazone). J Nucl Med. 2008;49:201–5.

    Article  PubMed  CAS  Google Scholar 

  127. Dehdashti F, Mintun MA, Lewis JS, et al. In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging. 2003;30:844–50.

    Article  PubMed  CAS  Google Scholar 

  128. Yuan H, Schroeder T, Bowsher JE, Hedlund LW, Wong T, Dewhirst MW. Intertumoral differences in hypoxia selectivity of the PET imaging agent 64Cu(II)-diacetyl-Bis(N4-methylthiosemicarba­zone). J Nucl Med. 2006;47:989–98.

    PubMed  CAS  Google Scholar 

  129. Dehdashti F, Grigsby Perry W, Mintun Mark A, Lewis Jason S, Siegel Barry A, Welch Michael J. Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response-a preliminary report. Int J Radiat Oncol Biol Phys. 2003;55:1233–8.

    Article  PubMed  Google Scholar 

  130. Vavere AL, Lewis JS. Cu-ATSM: a radiopharmaceutical for the PET imaging of hypoxia. Dalton Trans. 2007;4:4893–902.

    Article  CAS  Google Scholar 

  131. Burgman P, O’Donoghue JA, Lewis JS, Welch MJ, Humm JL, Ling CC. Cell line-dependent differences in uptake and retention of the hypoxia-selective nuclear imaging agent Cu-ATSM. Nucl Med Biol. 2005;32:623–30.

    Article  PubMed  CAS  Google Scholar 

  132. Takahashi N, Fujibayashi Y, Yonekura Y, et al. Evaluation of 62Cu labeled diacetyl bis(N4-methylthiosemicarbazone) in hypoxic tissue in patients with lung cancer. Ann Nucl Med. 2000;14:323–8.

    Article  PubMed  CAS  Google Scholar 

  133. Chen DL, Dehdashti F. Advances in positron emission tomographic imaging of lung cancer. Proc Am Thorac Soc. 2005;2:541–4.

    Article  PubMed  CAS  Google Scholar 

  134. Lewis JS, Laforest R, Buettner TL, et al. Copper-64-diacetyl-bis(N4-methylthiosemicarbazone): an agent for radiotherapy. Proc Natl Acad Sci USA. 2001;98:1206–11.

    Article  PubMed  CAS  Google Scholar 

  135. Jurisson S, Lydon J. Potential technetium small molecule radiopharmaceuticals. Chem Rev. 1999;99:2205–18.

    Article  PubMed  CAS  Google Scholar 

  136. Cutler CS, Lewis JS, Anderson CJ. Utilization of metabolic, transport and receptor-mediated processes to deliver agents for cancer diagnosis. Adv Drug Deliv Rev. 1999;37:189–211.

    Article  PubMed  CAS  Google Scholar 

  137. Hagooly A, Rossin R, Welch MJ. Small molecule receptors as imaging targets. In: Semmler W, Shwaiger M, editors. Handbook of experimental pharmacology. Berlin: Springer; 2008. p. 93–129.

    Google Scholar 

  138. Rowland DJ, Tu Z, Xu J, Ponde D, Mach RH, Welch MJ. Synthesis and in vivo evaluation of 2 high-affinity 76Br-labeled {sigma}2-receptor ligands. J Nucl Med. 2006;47:1041–8.

    PubMed  CAS  Google Scholar 

  139. Mathias CJ, Lewis MR, Reichert DE, et al. Preparation of 66Ga- and 68Ga-labeled Ga(III)-deferoxamine-folate as potential folate-receptor-targeted PET radiopharmaceuticals. Nucl Med Biol. 2003;30:725–31.

    Article  PubMed  CAS  Google Scholar 

  140. Vallabhajosula S. 18F-Labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med. 2007;37:400–19.

    Article  PubMed  Google Scholar 

  141. Mankoff DA, Shields AF, Krohn KA. PET imaging of cellular proliferation. Radiol Clin North Am. 2005;43:153–67.

    Article  PubMed  Google Scholar 

  142. Kiesewetter DO, Kilbourn MR, Landvatter SW, Heiman DF, Katzenellenbogen JA, Welch MJ. Preparation of four fluorine-18-labeled estrogens and their selective uptakes in target tissues of immature rats. J Nucl Med. 1984;25:1212–21.

    PubMed  CAS  Google Scholar 

  143. Kumar P, Mercer J, Doerkson C, Tonkin K, McEwan AJB. Clinical production, stability studies and PET imaging with 16-alpha-[18F]fluoroestradiol ([18F]FES) in ER positive breast ­cancer patients. J Pharm Pharm Sci. 2007;10:256s–65s.

    PubMed  CAS  Google Scholar 

  144. Mintun MA, Welch MJ, Siegel BA, et al. Breast cancer—PET imaging of estrogen receptors. Radiology. 1988;169:45–8.

    PubMed  CAS  Google Scholar 

  145. Dehdashti F, Mortimer J, Trinkaus K, et al. PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer. Breast Cancer Res Treat. 2009;113:509–17.

    Article  PubMed  CAS  Google Scholar 

  146. Seimbille Y, Ali H, van Lier JE. Synthesis of 2,16 alpha- and 4,16 alpha-difluoroestradiols and their 11 beta-methoxy derivatives as potential estrogen receptor-binding radiopharmaceuticals. J Chem Soc Perkin Trans. 2002;1:657–63.

    Article  CAS  Google Scholar 

  147. VanBrocklin HF, Rocque PA, Lee HV, Carlson KE, Katzenellenbogen JA, Welch MJ. 16[beta]-[18F]fluoromoxestrol: a potent, metabolically stable positron emission tomography imaging agent for estrogen receptor positive human breast tumors. Life Sci. 1993;53:811–9.

    Article  PubMed  CAS  Google Scholar 

  148. Larson SM, Morris M, Gunther I, et al. Tumor localization of 16{beta}-18F-fluoro-5{alpha}-dihydrotestosterone versus [18F]FDG in patients with progressive, metastatic prostate cancer. J Nucl Med. 2004;45:366–73.

    PubMed  CAS  Google Scholar 

  149. Zanzonico PB, Finn R, Pentlow KS, et al. PET-based radiation dosimetry in man of 18F-fluorodihydrotestosterone, a new radiotracer for imaging prostate cancer. J Nucl Med. 2004;45:1966–71.

    PubMed  CAS  Google Scholar 

  150. Kuhajda FP. Fatty acid synthase and cancer: new application of an old pathway. Cancer Res. 2006;66:5977–80.

    Article  PubMed  CAS  Google Scholar 

  151. Glunde K, Bhujwalla ZM. Choline kinase alpha in cancer prognosis and treatment. Lancet Oncol. 2007;8:855–7.

    Article  PubMed  CAS  Google Scholar 

  152. Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J. 1999;343(Pt 2):281–99.

    Article  PubMed  CAS  Google Scholar 

  153. Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med. 1998;39:990–5.

    PubMed  CAS  Google Scholar 

  154. DeGrado TR, Baldwin SW, Wang S, et al. Synthesis and evaluation of 18F-labeled choline analogs as oncologic PET tracers. J Nucl Med. 2001;42:1805–14.

    PubMed  CAS  Google Scholar 

  155. Hara T, Kosaka N, Kishi H. Development of 18F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med. 2002;43:187–99.

    PubMed  CAS  Google Scholar 

  156. Bansal A, Shuyan W, Hara T, Harris RA, Degrado TR. Biodisposition and metabolism of [18F]fluorocholine in 9L glioma cells and 9L glioma-bearing fisher rats. Eur J Nucl Med Mol Imaging. 2008;35:1192–203.

    Article  PubMed  CAS  Google Scholar 

  157. Henriksen G, Herz M, Hauser A, Schwaiger M, Wester HJ. Synthesis and preclinical evaluation of the choline transport tracer deshydroxy-[18F]fluorocholine ([18F]dOC). Nucl Med Biol. 2004;31:851–8.

    Article  PubMed  CAS  Google Scholar 

  158. Ng CK, Huang SC, Schelbert HR, Buxton DB. Validation of a model for [1-11C]acetate as a tracer of cardiac oxidative metabolism. Am J Physiol. 1994;266:H1304–15.

    PubMed  CAS  Google Scholar 

  159. Shreve P, Chiao PC, Humes HD, Schwaiger M, Gross MD. Carbon-11-acetate PET imaging in renal disease. J Nucl Med. 1995;36:1595–601.

    PubMed  CAS  Google Scholar 

  160. Vavere AL, Kridel SJ, Wheeler FB, Lewis JS. 1-11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer. J Nucl Med. 2008;49:327–34.

    Article  PubMed  CAS  Google Scholar 

  161. Kwock L, Smith JK, Castillo M, et al. Clinical role of proton ­magnetic resonance spectroscopy in oncology: brain, breast, and prostate cancer. Lancet Oncol. 2006;7:859–68.

    Article  PubMed  Google Scholar 

  162. Schoder H, Herrmann K, Gonen M, et al. 2-[18F]fluoro-2-deoxyglucose positron emission tomography for the detection of disease in patients with prostate-specific antigen relapse after ­radical prostatectomy. Clin Cancer Res. 2005;11:4761–9.

    Article  PubMed  Google Scholar 

  163. Giovacchini G, Picchio M, Coradeschi E, et al. [11C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging. 2008;35:1065–73.

    Article  PubMed  CAS  Google Scholar 

  164. Krause BJ, Souvatzoglou M, Tuncel M, et al. The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35:18–23.

    Article  PubMed  CAS  Google Scholar 

  165. McGivan JD, Pastor-Anglada M. Regulatory and molecular aspects of mammalian amino acid transport. Biochem J. 1994;299(Pt 2):321–34.

    PubMed  CAS  Google Scholar 

  166. Sang J, Lim YP, Panzica M, Finch P, Thompson NL. TA1, a highly conserved oncofetal complementary DNA from rat hepatoma, encodes an integral membrane protein associated with liver development, carcinogenesis, and cell activation. Cancer Res. 1995;55:1152–9.

    PubMed  CAS  Google Scholar 

  167. Asano S, Kameyama M, Oura A, et al. L-type amino acid transporter-1 expressed in human astrocytomas, U343MGa. Biol Pharm Bull. 2007;30:415–22.

    Article  PubMed  CAS  Google Scholar 

  168. Kondoh N, Imazeki N, Arai M, et al. Activation of a system A amino acid transporter, ATA1/SLC38A1, in human hepatocellular carcinoma and preneoplastic liver tissues. Int J Oncol. 2007;31:81–7.

    PubMed  CAS  Google Scholar 

  169. Nawashiro H, Otani N, Shinomiya N, et al. L-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. Int J Cancer. 2006;119:484–92.

    Article  PubMed  CAS  Google Scholar 

  170. Nakanishi K, Ogata S, Matsuo H, et al. Expression of LAT1 predicts risk of progression of transitional cell carcinoma of the upper urinary tract. Virchows Arch. 2007;451:681–90.

    Article  PubMed  CAS  Google Scholar 

  171. Ishiwata K, Kubota K, Murakami M, et al. Re-evaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measured in vivo? J Nucl Med. 1993;34:1936–43.

    PubMed  CAS  Google Scholar 

  172. Becherer A, Karanikas G, Szabo M, et al. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging. 2003;30:1561–7.

    Article  PubMed  CAS  Google Scholar 

  173. Plathow C, Weber WA. Tumor cell metabolism imaging. J Nucl Med. 2008;49 Suppl 2:43S–63S.

    Article  PubMed  CAS  Google Scholar 

  174. Sutinen E, Jyrkkio S, Gronroos T, Haaparanta M, Lehikoinen P, Nagren K. Biodistribution of [11C] methylaminoisobutyric acid, a tracer for PET studies on system A amino acid transport in vivo. Eur J Nucl Med. 2001;28:847–54.

    Article  PubMed  CAS  Google Scholar 

  175. Tolvanen T, Nagren K, Yu M, et al. Human radiation dosimetry of [11C]MeAIB, a new tracer for imaging of system A amino acid transport. Eur J Nucl Med Mol Imaging. 2006;33:1178–84.

    Article  PubMed  CAS  Google Scholar 

  176. Sutinen E, Jyrkkio S, Alanen K, Nagren K, Minn H. Uptake of [N-methyl-11C]alpha-methylaminoisobutyric acid in untreated head and neck cancer studied by PET. Eur J Nucl Med Mol Imaging. 2003;30:72–7.

    Article  PubMed  CAS  Google Scholar 

  177. Langen KJ, Jarosch M, Muhlensiepen H, et al. Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl Med Biol. 2003;30:501–8.

    Article  PubMed  CAS  Google Scholar 

  178. Langen KJ, Hamacher K, Weckesser M, et al. O-(2-[18F]fluoroethyl)-l-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol. 2006;33:287–94.

    Article  PubMed  CAS  Google Scholar 

  179. Oka S, Hattori R, Kurosaki F, et al. A preliminary study of anti-1-amino-3-18F-fluorocyclobutyl-1-carboxylic acid for the detection of prostate cancer. J Nucl Med. 2007;48:46–55.

    PubMed  CAS  Google Scholar 

  180. Langen KJ, Ziemons K, Kiwit JC, et al. 3-[123I]iodo-alpha-methyltyrosine and [methyl-11C]-l-methionine uptake in cerebral gliomas: a comparative study using SPECT and PET. J Nucl Med. 1997;38:517–22.

    PubMed  CAS  Google Scholar 

  181. Deloar HM, Fujiwara T, Nakamura T, et al. Estimation of internal absorbed dose of l-[methyl-11C]methionine using whole-body positron emission tomography. Eur J Nucl Med. 1998;25:629–33.

    Article  PubMed  CAS  Google Scholar 

  182. Floeth FW, Pauleit D, Sabel M, et al. 18F-FET PET differentiation of ring-enhancing brain lesions. J Nucl Med. 2006;47:776–82.

    PubMed  CAS  Google Scholar 

  183. Nunez R, Macapinlac HA, Yeung HW, et al. Combined [18F]FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med. 2002;43:46–55.

    PubMed  Google Scholar 

  184. Schuster DM, Votaw JR, Nieh PT, et al. Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med. 2007;48:56–63.

    PubMed  CAS  Google Scholar 

  185. Kaira K, Oriuchi N, Otani Y, et al. Fluorine-18-alpha-methyltyrosine positron emission tomography for diagnosis and staging of lung cancer: a clinicopathologic study. Clin Cancer Res. 2007;13:6369–78.

    Article  PubMed  CAS  Google Scholar 

  186. Pirotte B, Goldman S, Massager N, et al. Comparison of [18F]FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med. 2004;45:1293–8.

    PubMed  CAS  Google Scholar 

  187. Van Laere K, Ceyssens S, Van Calenbergh F, et al. Direct comparison of [18F]FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging. 2005;32:39–51.

    Article  PubMed  CAS  Google Scholar 

  188. Grosu AL, Piert M, Weber WA, et al. Positron emission tomography for radiation treatment planning. Strahlenther Onkol. 2005;181:483–99.

    Article  PubMed  Google Scholar 

  189. Bergstrom M, Collins VP, Ehrin E, et al. Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]EDTA, [11C]glucose, and [11C]methionine. J Comput Assist Tomogr. 1983;7:1062–6.

    Article  PubMed  CAS  Google Scholar 

  190. Kracht LW, Miletic H, Busch S, et al. Delineation of brain tumor extent with [11C] l-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res. 2004;10:7163–70.

    Article  PubMed  CAS  Google Scholar 

  191. Pauleit D, Floeth F, Hamacher K, et al. O-(2-[18F]fluoroethyl)-l-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain. 2005;128:678–87.

    Article  PubMed  Google Scholar 

  192. Grosu AL, Weber WA, Franz M, et al. Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63:511–9.

    Article  PubMed  CAS  Google Scholar 

  193. Kenny LM, Aboagye EO, Price PM. Positron emission tomography imaging of cell proliferation in oncology. Clin Oncol. 2004;16:176–85.

    Article  CAS  Google Scholar 

  194. Toyohara J, Fujibayashi Y. Trends in nucleoside tracers for PET imaging of cell proliferation. Nucl Med Biol. 2003;30:681–5.

    Article  PubMed  Google Scholar 

  195. Nimmagadda S, Shields A. The role of DNA synthesis imaging in cancer in the era of targeted therapeutics. Cancer Metastasis Rev. 2008;27:575–87.

    Article  PubMed  Google Scholar 

  196. Schwartz JL, Tamura Y, Jordan R, Grierson JR, Krohn KA. Monitoring tumor cell proliferation by targeting DNA synthetic processes with thymidine and thymidine analogs. J Nucl Med. 2003;44:2027–32.

    PubMed  CAS  Google Scholar 

  197. Christman D, Crawford EJ, Friedkin M, Wolf AP. Detection of DNA-synthesis in intact organisms with positron-emitting methyl-C-11 thymidine. Proc Natl Acad Sci USA. 1972;69:988–92.

    Article  PubMed  CAS  Google Scholar 

  198. Mach RH, Dehdashti F, Wheeler KT. PET radiotracers for ­imaging the proliferative status of solid tumors. PET Clin. 2009;4:1–15.

    Article  PubMed  Google Scholar 

  199. Conti PS, Hilton J, Wong DF, et al. High performance liquid chromatography of carbon-11 labeled thymidine and its major catabolites for clinical PET studies. Nucl Med Biol. 1994;21:1045–51.

    Article  PubMed  CAS  Google Scholar 

  200. Bading JR, Shields AF. Imaging of cell proliferation: status and prospects. J Nucl Med. 2008;49:64S–80S.

    Article  PubMed  CAS  Google Scholar 

  201. Dunphy MPS, Lewis JS. Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with PET. J Nucl Med. 2009;50:106S–21S.

    Article  PubMed  CAS  Google Scholar 

  202. Reubi JC. Peptide receptors as molecular targets for cancer ­diagnosis and therapy. Endocr Rev. 2003;24:389–427.

    Article  PubMed  CAS  Google Scholar 

  203. Meisetschlager G, Poethko T, Stahl A, et al. Gluc-Lys([18F]FP)-TOCA PET in patients with SSTR-positive tumors: biodistribution and diagnostic evaluation compared with [111In]DTPA-octreotide. J Nucl Med. 2006;47:566–73.

    PubMed  Google Scholar 

  204. Zhang H, Chen J, Waldherr C, et al. Synthesis and evaluation of bombesin derivatives on the basis of pan-bombesin peptides labeled with indium-111, lutetium-177, and yttrium-90 for targeting bombesin receptor-expressing tumors. Cancer Res. 2004;64:6707–15.

    Article  PubMed  CAS  Google Scholar 

  205. Haubner R, Kuhnast B, Mang C, et al. [18F]Galacto-RGD: ­synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem. 2004;15:61–9.

    Article  PubMed  CAS  Google Scholar 

  206. Froidevaux S, Eberle AN, Christe M, et al. Neuroendocrine tumor targeting: study of novel gallium-labeled somatostatin radiopeptides in a rat pancreatic tumor model. Int J Cancer. 2002;98:930–7.

    Article  PubMed  CAS  Google Scholar 

  207. Prasanphanich AF, Nanda PK, Rold TL, et al. [64Cu-NOTA-8-Aoc-BBN(7-14)NH2] targeting vector for positron-emission tomography imaging of gastrin-releasing peptide receptor-expressing tissues. Proc Natl Acad Sci USA. 2007;104:12462–7.

    Article  PubMed  CAS  Google Scholar 

  208. de Jong M, Breeman WA, Bakker WH, et al. Comparison of 111In-labeled somatostatin analogues for tumor scintigraphy and radionuclide therapy. Cancer Res. 1998;58:437–41.

    PubMed  Google Scholar 

  209. Wester HJ, Schottelius M, Scheidhauer K, et al. PET imaging of somatostatin receptors: design, synthesis and preclinical evaluation of a novel F-18-labelled, carbohydrated analogue of octreotide. Eur J Nucl Med Mol Imaging. 2003;30:117–22.

    Article  PubMed  CAS  Google Scholar 

  210. Haubner R, Wester HJ, Burkhart F, et al. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med. 2001;42:326–36.

    PubMed  CAS  Google Scholar 

  211. Wu Z, Li ZB, Chen K, et al. microPET of tumor integrin alphavbeta3 expression using 18F-labeled PEGylated tetrameric RGD peptide (18F-FPRGD4). J Nucl Med. 2007;48:1536–44.

    Article  PubMed  CAS  Google Scholar 

  212. Antunes P, Ginj M, Walter MA, Chen J, Reubi JC, Maecke HR. Influence of different spacers on the biological profile of a DOTA-somatostatin analogue. Bioconjug Chem. 2007;18:84–92.

    Article  PubMed  CAS  Google Scholar 

  213. Jia B, Liu Z, Shi J, et al. Linker effects on biological properties of 111In-labeled DTPA conjugates of a cyclic RGDfK dimer. Bioconjug Chem. 2008;19:201–10.

    Article  PubMed  CAS  Google Scholar 

  214. Garrison JC, Rold TL, Sieckman GL, et al. Evaluation of the pharmacokinetic effects of various linking group using the 111In-DOTA-X-BBN(7-14)NH2 structural paradigm in a prostate cancer model. Bioconjug Chem. 2008;19:1803–12.

    Article  PubMed  CAS  Google Scholar 

  215. Parry JJ, Kelly TS, Andrews R, Rogers BE. In vitro and in vivo evaluation of 64Cu-labeled DOTA-linker-bombesin(7-14) analogues containing different amino acid linker moieties. Bioconjug Chem. 2007;18:1110–7.

    Article  PubMed  CAS  Google Scholar 

  216. Schottelius M, Wester HJ. Molecular imaging targeting peptide receptors. Methods. 2009;48:161–77.

    Article  PubMed  CAS  Google Scholar 

  217. Rolleman EJ, Kooij PP, de Herder WW, Valkema R, Krenning EP, de Jong M. Somatostatin receptor subtype 2-mediated uptake of radiolabelled somatostatin analogues in the human kidney. Eur J Nucl Med Mol Imaging. 2007;34:1854–60.

    Article  PubMed  CAS  Google Scholar 

  218. Huerta S, Goulet EJ, Huerta-Yepez S, Livingston EH. Screening and detection of apoptosis. J Surg Res. 2007;139:143–56.

    Article  PubMed  CAS  Google Scholar 

  219. Gottlieb RA. Part III: molecular and cellular hematology apoptosis. In: Lichtman MA, Beutler E, Kipps TJ, editors. Williams hematology. 7th ed. New York: McGraw-Hill Book Co; 2007. p. 125–30.

    Google Scholar 

  220. Yang MY, Chuang H, Chen RF, Yang KD. Reversible phosphatidylserine expression on blood granulocytes related to membrane perturbation but not DNA strand breaks. J Leukoc Biol. 2002;71:231–7.

    PubMed  CAS  Google Scholar 

  221. Boersma HH, Kietselaer BL, Stolk LM, et al. Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med. 2005;46:2035–50.

    PubMed  CAS  Google Scholar 

  222. Munoz LE, Franz S, Pausch F, et al. The influence on the ­immunomodulatory effects of dying and dead cells of Annexin V. J Leukoc Biol. 2007;81:6–14.

    Article  PubMed  CAS  Google Scholar 

  223. Blankenberg FG. In vivo detection of apoptosis. J Nucl Med. 2008;49 Suppl 2:81S–95S.

    Article  PubMed  CAS  Google Scholar 

  224. Belhocine T, Steinmetz N, Hustinx R, et al. Increased uptake of the apoptosis-imaging agent 99mTc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res. 2002;8:2766–74.

    PubMed  CAS  Google Scholar 

  225. Kemerink GJ, Liu X, Kieffer D, et al. Safety, biodistribution, and dosimetry of 99mTc-HYNIC-annexin V, a novel human recombinant annexin V for human application. J Nucl Med. 2003;44:947–52.

    PubMed  CAS  Google Scholar 

  226. Boersma HH, Liem IH, Kemerink GJ, et al. Comparison between human pharmacokinetics and imaging properties of two conjugation methods for 99mTc-annexin A5. Br J Radiol. 2003;76:553–60.

    Article  PubMed  CAS  Google Scholar 

  227. Rottey S, Slegers G, Van Belle S, Goethals I, Van de Wiele C. Sequential 99mTc-hydrazinonicotinamide-annexin V imaging for predicting response to chemotherapy. J Nucl Med. 2006;47:1813–8.

    PubMed  CAS  Google Scholar 

  228. Belhocine T, Steinmetz N, Li C, Green A, Blankenberg FG. The imaging of apoptosis with the radiolabeled annexin V: optimal timing for clinical feasibility. Technol Cancer Res Treat. 2004;3:23–32.

    PubMed  CAS  Google Scholar 

  229. van de Wiele C, Lahorte C, Vermeersch H, et al. Quantitative tumor apoptosis imaging using technetium-99m-HYNIC annexin V single photon emission computed tomography. J Clin Oncol. 2003;21:3483–7.

    Article  PubMed  Google Scholar 

  230. Tait JF, Brown DS, Gibson DF, Blankenberg FG, Strauss HW. Development and characterization of annexin V mutants with endogenous chelation sites for 99mTc. Bioconjug Chem. 2000;11:918–25.

    Article  PubMed  CAS  Google Scholar 

  231. Tait JF, Smith C, Blankenberg FG. Structural requirements for in vivo detection of cell death with 99mTc-annexin V. J Nucl Med. 2005;46:807–15.

    PubMed  CAS  Google Scholar 

  232. Himmelweit F. The collected papers of Paul Ehrlich. Immunology and cancer research, vol. 2. London: Pergamon; 1960.

    Google Scholar 

  233. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–7.

    Article  PubMed  CAS  Google Scholar 

  234. Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol. 2005;23:1137–46.

    Article  PubMed  CAS  Google Scholar 

  235. Kenanova V, Wu AM. Tailoring antibodies for radionuclide delivery. Exp Opin Drug Delivery. 2006;3:53–70.

    Article  CAS  Google Scholar 

  236. Reilly RM. The immunoreactivity of radiolabeled antibodies—its impact on tumor targeting and strategies for preservation. Cancer Biother Radiopharm. 2004;19:669–72.

    Article  PubMed  CAS  Google Scholar 

  237. Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn Jr PA. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods. 1984;72:77–89.

    Article  PubMed  CAS  Google Scholar 

  238. Lindmo T, Bunn Jr PA. Determination of the true immunoreactive fraction of monoclonal antibodies after radiolabeling. Methods Enzymol. 1986;121:678–91.

    Article  PubMed  CAS  Google Scholar 

  239. Konishi S, Hamacher K, Vallabhajosula S, et al. Determination of immunoreactive fraction of radiolabeled monoclonal antibodies: what is an appropriate method? Cancer Biother Radiopharm. 2004;19:706–15.

    Article  PubMed  CAS  Google Scholar 

  240. Anderson CJ, Connett JM, Schwarz SW, et al. Copper-64-labeled antibodies for PET imaging. J Nucl Med. 1992;33:1685–90.

    PubMed  CAS  Google Scholar 

  241. Anderson CJ, Schwarz SW, Connett JM, et al. Preparation, biodistribution and dosimetry of copper-64-labeled anti-colorectal ­carcinoma monoclonal antibody fragments 1A3-F(ab’)2. J Nucl Med. 1995;36:850–8.

    PubMed  CAS  Google Scholar 

  242. Saijo N. What are the reasons for negative phase III trials of molecular-target-based drugs? Cancer Sci. 2004;95:772–6.

    Article  PubMed  CAS  Google Scholar 

  243. Wu AM. Antibodies and antimatter: the resurgence of immuno-PET. J Nucl Med. 2009;50:2–5.

    Article  PubMed  CAS  Google Scholar 

  244. http://www.clinicaltrials.gov. Accessed 15 Oct 2009.

  245. Philpott GW, Schwarz SW, Anderson CJ, et al. RadioimmunoPET: detection of colorectal carcinoma with positron-emitting copper-64-labeled monoclonal antibody. J Nucl Med. 1995;36:1818–24.

    PubMed  CAS  Google Scholar 

  246. Anderson CJ, Connett JM, Schwarz SW, et al. Copper-64-labeled antibodies for PET imaging. J Nucl Med. 1992;33:1685–91.

    PubMed  CAS  Google Scholar 

  247. Philpott GW, Siegel BA, Schwarz SW, et al. Immunoscintigraphy with a new indium-111-labeled monoclonal antibody (MAb 1A3) in patients with colorectal cancer. Dis Colon Rectum. 1994;37:782–92.

    Article  PubMed  CAS  Google Scholar 

  248. Connett JM, Anderson CJ, Guo LW, et al. Radioimmunotherapy with a 64Cu-labeled monoclonal antibody: a comparison with 67Cu. Proc Natl Acad Sci USA. 1996;93:6814–8.

    Article  PubMed  CAS  Google Scholar 

  249. Perk LR, Visser OJ, Stigter-van Walsum M, et al. Preparation and evaluation of 89Zr-Zevalin for monitoring of 90Y-Zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imaging. 2006;33:1337–45.

    Article  PubMed  CAS  Google Scholar 

  250. Nagengast WB, de Vries EG, Hospers GA, et al. In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J Nucl Med. 2007;48:1313–9.

    Article  PubMed  CAS  Google Scholar 

  251. Meijs WE, Haisma HJ, Klok RP, et al. Zirconium-labeled monoclonal antibodies and their distribution in tumor-bearing nude mice. J Nucl Med. 1997;38:112–8.

    PubMed  CAS  Google Scholar 

  252. Perk LR, Vosjan MJWD, Visser GWM, et al. Isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium 89 for immuno-PET imaging Eur J Nucl Med Mol Imaging 2010;37:250–259.

    Google Scholar 

  253. Divgi CR, Pandit-Taskar N, Jungbluth AA, et al. Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol. 2007;8:304–10.

    Article  PubMed  CAS  Google Scholar 

  254. Milenic DE, Brady ED, Brechbiel MW. Antibody-targeted radiation cancer therapy. Nat Rev Drug Discov. 2004;3:488–98.

    Article  PubMed  CAS  Google Scholar 

  255. McDevitt MR, Ma D, Simon J, Frank RK, Scheinberg DA. Design and synthesis of 225Ac radioimmunopharmaceuticals. Appl Radiat Isot. 2002;57:841–7.

    Article  PubMed  CAS  Google Scholar 

  256. Abe K, Sasaki M, Kuwabara Y, et al. Comparison of 18FDG-PET with Tc-99m-HMDP scintigraphy for the detection of bone metastases in patients with breast cancer. Ann Nucl Med. 2005;19:573–9.

    Article  PubMed  Google Scholar 

  257. Adler LP, Faulhaber PF, Schnur KC, AlKasi NL, Shenk RR. Axillary lymph node metastases: screening with [F-18]2-deoxy-2-fluoro-d-glucose (FDG) PET. Radiology. 1997;203:323–7.

    PubMed  CAS  Google Scholar 

  258. Avril N, Dose J, Janicke F, et al. Assessment of axillary lymph node involvement in breast cancer patients with positron emission tomography using radiolabeled 2-(fluorine-18)fluoro-2-deoxy-d-glucose. J Natl Cancer Inst. 1996;88:1204–9.

    Article  PubMed  CAS  Google Scholar 

  259. Amit A, Beck D, Lowenstein L, et al. The role of hybrid PET/CT in the evaluation of patients with cervical cancer. Gynecol Oncol. 2006;100:65–9.

    Article  PubMed  Google Scholar 

  260. Arulampalam T, Costa D, Visvikis D, Boulos P, Taylor I, Ell P. The impact of FDG-PET on the management algorithm for recurrent colorectal cancer. Eur J Nucl Med. 2001;28:1758–65.

    Article  PubMed  CAS  Google Scholar 

  261. Arulampalam THA, Francis DL, Visvikis D, Taylor I, Ell PJ. FDG-PET for the pre-operative evaluation of colorectal liver metastases. Eur J Surg Oncol. 2004;30:286–91.

    Article  PubMed  CAS  Google Scholar 

  262. Chen LB, Tong IL, Song HZ, Zhu H, Wang YC. F-18-DG PET/CT in detection of recurrence and metastasis of colorectal cancer. World J Gastroenterol. 2007;13:5025–9.

    PubMed  Google Scholar 

  263. Abdel-Nabi H, Doerr RJ, Lamonica DM, et al. Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose ­whole-body PET: correlation with histopathologic and CT findings. Radiology. 1998;206:755–60.

    PubMed  CAS  Google Scholar 

  264. Adams S, Baum RP, Stuckensen T, Bitter K, Hor G. Prospective comparison of F-18-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer. Eur J Nucl Med. 1998;25:1255–60.

    Article  PubMed  CAS  Google Scholar 

  265. Akcali C, Zincirkeser S, Erbagcy Z, et al. Detection of metastases in patients with cutaneous melanoma using FDG-PET/CT. J Int Med Res. 2007;35:547–53.

    PubMed  CAS  Google Scholar 

  266. Chang JTC, Chan SC, Yen TC, et al. Nasopharyngeal carcinoma staging by 18F-fluorodeoxyglucose positron emission tomography. Int J Radiat Oncol Biol Phys. 2005;62:501–7.

    Article  PubMed  CAS  Google Scholar 

  267. Bury T, Barreto A, Daenen F, Barthelemy N, Ghaye B, Rigo P. Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer. Eur J Nucl Med. 1998;25:1244–7.

    Article  PubMed  CAS  Google Scholar 

  268. Castellucci P, Perrone AM, Picchio M, et al. Diagnostic accuracy of F-18-FDG PET/CT in characterizing ovarian lesions and staging ovarian cancer: correlation with transvaginal ultrasonography, computed tomography, and histology. Nucl Med Commun. 2007;28:589–95.

    Article  PubMed  CAS  Google Scholar 

  269. Chang CH, Wu HC, Tsai JJP, Shen YY, Changlai SP, Kao A. Detecting metastatic pelvic lymph nodes by F-18-2-deoxyglucose positron emission tomography in patients with prostate-specific antigen relapse after treatment for localized prostate cancer. Urol Int. 2003;70:311–5.

    Article  PubMed  Google Scholar 

  270. Cermik TF, Mavi A, Acikgoz G, Houseni M, Dadparvar S, Alavi A. FDG PET in detecting primary and recurrent malignant salivary gland tumors. Clin Nucl Med. 2007;32:286–91.

    Article  PubMed  Google Scholar 

  271. Aide N, Cappele O, Bottet P, et al. Efficiency of [F-18]FDG PET in characterising renal cancer and detecting distant metastases: a comparison with CT. Eur J Nucl Med Mol Imaging. 2003;30:1236–45.

    Article  PubMed  Google Scholar 

  272. Chang CH, Shiau YC, Shen YY, Kao A, Lin CC, Lee CC. Differentiating solitary pulmonary metastases in patients with renal cell carcinomas by F-18-fluoro-2-deoxyglucose positron emission tomography—a preliminary report. Urol Int. 2003;71:306–9.

    Article  PubMed  CAS  Google Scholar 

  273. Chen J, Cheong JH, Yun MJ, et al. Improvement in preoperative staging of gastric adenocarcinoma with positron emission tomography. Cancer. 2005;103:2383–90.

    Article  PubMed  Google Scholar 

  274. Choi JY, Lee KH, Shim YM, et al. Improved detection of ­individual nodal involvement in squamous cell carcinoma of the esophagus by FDG PET. J Nucl Med. 2000;41:808–15.

    PubMed  CAS  Google Scholar 

  275. Bennink RJ, van Tienhoven G, Rijks LJ, Noorduyn AL, Janssen AG, Sloof GW. In vivo prediction of response to antiestrogen treatment in estrogen receptor-positive breast cancer. J Nucl Med. 2004;45:1–7.

    PubMed  CAS  Google Scholar 

  276. Caveliers V, Everaert H, John CS, Lahoutte T, Bossuyt A. Sigma receptor scintigraphy with N-[2-(1′-piperidinyl)ethyl]-3-123I-iodo-4-methoxybenzamide of patients with suspected primary breast cancer: first clinical results. J Nucl Med. 2002;43:1647–9.

    PubMed  CAS  Google Scholar 

  277. Jonson SD, Bonasera TA, Dehdashti F, Cristel ME, Katzenellenbogen JA, Welch MJ. Comparative breast tumor imaging and comparative in vitro metabolism of 16[alpha]-[18F]Fluoroestradiol-17[beta] and 16[beta]-[18F]fluoromoxestrol in isolated hepatocytes. Nucl Med Biol. 1999;26:123–30.

    Article  PubMed  CAS  Google Scholar 

  278. Dehdashti F, Flanagan FL, Mortimer JE, Katzenellenbogen JA, Welch MJ, Siegel BA. Positron emission tomographic assessment of “metabolic flare” to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med Mol Imaging. 1999;26:51–6.

    Article  CAS  Google Scholar 

  279. McGuire AH, Dehdashti F, Siegel BA, et al. Positron tomographic assessment of 16{alpha}-[18F] fluoro-17{beta}-estradiol uptake in metastatic breast carcinoma. J Nucl Med. 1991;32:1526–31.

    PubMed  CAS  Google Scholar 

  280. Mortimer JE, Dehdashti F, Siegel BA, Trinkaus K, Katzenellenbogen JA, Welch MJ. Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol. 2001;19:2797–803.

    PubMed  CAS  Google Scholar 

  281. Mortimer JE, Dehdashti F, Siegel BA, Katzenellenbogen JA, Fracasso P, Welch MJ. Positron emission tomography with 2- F-18 fluoro-2-deoxy-d-glucose and 16 alpha- F-18 fluoro-17 beta-estradiol in breast cancer: correlation with estrogen receptor status and response to systemic therapy. Clin Cancer Res. 1996;2:933–9.

    PubMed  CAS  Google Scholar 

  282. Linden HM, Stekhova SA, Link JM, et al. Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J Clin Oncol. 2006;24:2793–9.

    Article  PubMed  CAS  Google Scholar 

  283. Dehdashti F, Picus J, Michalski JM, et al. Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging. 2005;32:344–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason S. Lewis PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zeglis, B.M., Holland, J.P., Lebedev, A.Y., Cantorias, M.V., Lewis, J.S. (2013). Radiopharmaceuticals for Imaging in Oncology with Special Emphasis on Positron-Emitting Agents. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48894-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48894-3_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48893-6

  • Online ISBN: 978-0-387-48894-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics