Skip to main content
Log in

Vapor Bubble Nucleation: A Microscopic Phenomenon

  • Invited Review Article
  • Published:
KSME International Journal Aims and scope Submit manuscript

Abstract

In this article, vapor bubble nucleation in liquid and the evaporation process of a liquid droplet at its superheat limit were discussed from the viewpoint of molecular clustering (molecular cluster model for bubble nucleation). For the vapor bubble formation, the energy barrier against bubble nucleation was estimated by the molecular interaction due to the London dispersion force. Bubble nucleation by quantum tunneling in liquid helium under negative pressure near the absolute zero temperature and bubble nucleation on cavity free micro heaters were also presented as the homogenous nucleation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A s :

Surface area of heater

d m :

Average distance between molecules

D n :

Rate of molecules striking on the surface of n-mer cluster

d w :

Van der Waals’ diameter of liquid molecules

E I :

Ionization potential

F n :

Free energy needed to form n-mer cluster

F r :

Free energy needed to form a bubble with radius of r

ħ:

Plank constant

j :

Nucleation probability, Eq. (19)

J :

Nucleation rate of bubble per unit volume

J n :

Nucleation rate of n-mer cluster per unit volume

J s :

Nucleation rate per unit area

k B :

Boltzman constant

m :

Mass of molecule

M :

Molecular weight

m :

Nmber of molecules in a cluster

N :

Nmber density ( = ρm/m)

P e :

Pressure inside a bubble

P υ :

Vapor pressure

P :

Ambient pressure

γ:

Radius of bubble

R:

Gas constant

R d :

Radius of evaporated sphere in the droplet

T :

Temperature of liquid

T c :

Critical temperature

T f :

Melting temperature of liquid

t l :

Time lag of nucleation events

T s :

Superheat limit of liquid

V :

Volume of a droplet

υ:

Molar volume of liquid

V m :

Effective molecular volume of liquid

Z :

Coordination number

Z f :

Zeldovich nonequilibrium factor

α:

Polarizability of a liquid molecule

β:

Accommodation coefficient

ΔHυap :

Enthalpy of evaporation

Δf :

Enthalpy of fusion

ε0 :

Potential parameter of the London dispersion attraction

εm :

Energy needed to separate a pair of molecules

ευib :

Vibrational energy

μ:

Chemical potential

ρm :

Density of liquid

ρc :

Critical density of liquid

σ:

Interfacial tension

τ:

Tensile strength of liquid

ω:

Tunneling frequency

C :

Critical cluster or critical size bubble

References

  • Abraham B. M., Eckstein Y., Kotterson J. B., Kuchnir M., and Roach P. R., 1970, “Velocity of Sound, Density and Griierisen Constant in Liquid4He,”Phys. Rev. A, Vol. 1, pp. 250–257.

    Article  Google Scholar 

  • Avedisian, C. T., 1982, “Effect of Pressure on Bubble Growth Within Liquid Droplet at the Superheat Limit,” ASMEJ. Heat Transfer, Vol. 104, pp. 750–757.

    Article  Google Scholar 

  • Avedisian, C. T., 1998, “Modeling Homogeneous Bubble Nucleation in Liquids,” In Modeling of Engineering Heat Transfer Phenomena, Chap. 11, London: Computational Mechanics.

    Google Scholar 

  • Avedisian, C. T., Osborne, W. S., McLoed, F. E., and Curley, C. M., 1999, “Measuring Bubble Nucleation Temperature on the Surface of a Rapidly Heated Thermal Inkjet Heater Immersed in a Pool of Water,”Proc. R. Soc. Lond. A, Vol. 455, pp. 3875–3899.

    Article  Google Scholar 

  • Beams, J. W., 1959, “Tensile Strength of Liquid Argon, Helium, Nitrogen, and Oxygen,”Phys. Fluids, Vol. 2, pp. 1–4.

    Article  Google Scholar 

  • Byun, K., and Kwak, H., 2004, “A Model of Laser-Induced Cavitation,”Jpn. J. Appl. Phys., Vol. 43, pp. 621–630.

    Article  Google Scholar 

  • Blander, M., Hengstenberg, D., and Katz, J. L., 1971, “Bubble Nucleation in n-Pentane,n - Hexane,n -Pentane+Hexadecane Mixtures, and Water,”J. Phys. Chem., Vol. 75, pp. 3613–3619.

    Article  Google Scholar 

  • Blander, M., and Katz, J. L., 1975, “Bubble Nucleation in Liquids,”AIChE J., Vol. 21, pp. 833–848.

    Article  Google Scholar 

  • Briggs, L. J., 1950, “Limiting Negative Pressure of Water,”J. Appl. Phys., Vol. 21, pp. 721–722.

    Article  Google Scholar 

  • Briggs, L. J., 1951, “The Limiting Negative Pressure of Acetic Acid, Benzene, Aniline, Carbon Tetrachloride, and Chloroform,”J. Chem. Phys., Vol. 19, pp. 970–972.

    Article  Google Scholar 

  • Briggs, L. J., 1955, “Maximum Superheating of Water as a Measure of Negative Pressure,”J. Appl. Phys., Vol. 26, pp. 1001–1003.

    Article  Google Scholar 

  • Buckle, E. R., 1968, “A Kinetic Theory of Cluster Formation in the Condensation of Gases,”Trans. Faraday Soc, Vol. 65, pp. 1267–1288.

    Article  Google Scholar 

  • Chudnovsky E. M., 1992, “Phase Transitions in the Problem of the Decay of a Metastable State,”Phys. Rev. A., Vol. 46, pp. 8011–8014.

    Article  Google Scholar 

  • Doering, W., 1937, “Die Ueberhitzungsgrenze und Zereissfestigkeit von Fluessigkeiten,”Z. Physikal Chem., B., Vol. 36, pp. 371–386.

    Article  Google Scholar 

  • Doering, W., 938, “Berichtigung zu der Arbeit ; Die Ueberhitzungsgrenze und Zereissfestigkeit von Fluessigkeiten,”Z. Physikal Chem., B., Vol. 38, pp. 292–2941.

  • Eberhart, J. G., Kremsner, W., and Blander, M., 1975, “Metastability Limits of Superheated Liquids,”J. Colloid Interface Sci., Vol. 50, pp. 369–378.

    Article  Google Scholar 

  • Eberhart, J. G., and Schnyders, H. C., 1973, “Application of the Mechanical Stability Condition to the Prediction of the Limit of Superheat for Normal Alkanes, Ether, and Water,”J. Phys. Chem., Vol. 77, pp. 2730–2736.

    Article  Google Scholar 

  • Faber, T. E., 1972, “Introduction to the Theory of Liquid Metals,” Cambridge University Press, United Kingdom.

    Google Scholar 

  • Farkas, L., 1927, “Keimbildungsschwindigkeit in Uebersaetingten Daempfen,”Z. Phisikal Chem., Vol. 125, pp. 236–242.

    Article  Google Scholar 

  • Feder, J., Russel, K. C., Lothe, J., and Pound, G. M., 1966, “Homogeneous Nucleation and Growth of Droplets in Vapors,”Adv. Phys., Vol. 15, pp. 111–178.

    Article  Google Scholar 

  • Feynman, R. P., 1972, “Statistical Mechanics,” Benjamin, New York, pp. 125–126.

  • Fisher, J. C., 1948, “The Fracture of Liquids,”J. Appl. Phys., Vol. 19, pp. 1062–1067.

    Article  Google Scholar 

  • Fowkes, F. M., 1963, “Additivity of Intermolecular Forces at Interfaces,”J. Phys. Chem., Vol. 66, pp. 2538–2541.

    Article  Google Scholar 

  • Fowkes, F. M., 1964, “Attractive Forces at Interfaces,”Ind. and Eng. Chem., Vol. 56, pp. 40–52.

    Article  Google Scholar 

  • Frenkel, J., 1946, “Kinetic Theory of Liquids,” Oxford University Press, United Kingdom, p. 392.

    Google Scholar 

  • Hemmingsen, E. A., 1977, “Spontaneous Formation of Bubble in Gas Supersaturated Water,”Nature, Vol. 267, pp. 141–142.

    Article  Google Scholar 

  • Hirschfelder, J. O., Curtis, C. F., and Bird, R. B., 1954,Molecular Theory of Gases and Liquids, Wiley, New York, Chap. 13.

    Google Scholar 

  • Hirth, J. P., and Pound, G. M., 1963,Condensation and Evaporation, Pergamon.

  • Itzykson, C., Zuber, J. B., 1980,Quantum Field Theory, McGraw-Hill, New-York.

    Google Scholar 

  • Jarvis, T. J., Donohue, M. D., and Katz, J. L., 1975, “Bubble Nucleation Mechanism of Liquid Droplets,”J. Colloid Interface Sci., Vol. 50, pp. 359–368.

    Article  Google Scholar 

  • Judd, R. L., and Hwang, K. S., 1976, “A Comprehensive Model for Nucleate Pool Boiling Heat Transfer Including Microlayer Evaporation,” ASMEJ. Heat Transfer, Vol. 98, pp. 623–629.

    Article  Google Scholar 

  • Jung, J., Lee, J., Park, H., and Kwak, H., 2003, “Bubble Nucleation on Micro line Heaters Under Steady or Finite Pulse of Voltage Input,”Int. J. Heat Mass Transfer, Vol. 46, pp. 3897–3907.

    Article  Google Scholar 

  • Kenrick, F. B., Gilbert, C. S., and Wismer, K. L., 1924, “The Superheating of Liquids,”J. Phys. Chem., Vol. 28, pp. 1297–1307.

    Article  Google Scholar 

  • Kwak, H., 1990, “Homogeneous Bubble Nucleation,” InSome Unanswered Questions in Fluid Mechanics ed. By L. M. Trefethen and R. L. Panton,Appl. Mech. Rev., Vol.43, pp. 164–165.

  • Kwak, H., Jung, J., and Hong, J., 2002, “Quantum Nucleation of Bubbles in Liquid Helium near the Absolute Zero Temperature,”J. Phys. Soc. Jpn., Vol. 71, No. 9, pp. 2186–2191.

    Article  Google Scholar 

  • Kwak, H., and Lee, S., 1991, “Homogeneous Bubble Nucleation Predicted by a Molecular Interaction Model,” ASMEJ. Heat Transfer, Vol. 113, pp. 714–721.

    Article  Google Scholar 

  • Kwak, H., and Oh, S., and Park, C., 1995, “Bubble Dynamics on the Evolving Bubble Formed from the Droplet at the Superheat Limit,”Int. J. Heat Mass Transfer, Vol. 38, pp. 1709–1718.

    Article  Google Scholar 

  • Kwak, H., and Panton, R. L., 1983, “Gas Bubble Formation in Nonequilbrium Water-Gas Solutions,”J. Chem. Phys., Vol. 78, pp. 5795–5799.

    Article  Google Scholar 

  • Kwak, H., and Panton, R. L., 1985, “Tensile Strength of Simple Liquids Predicted by a Model of Molecular Interactions,”J. Phys., D. Appl. Phys., Vol. 18, pp. 647–659.

    Article  Google Scholar 

  • Lee, J., Park, H., Jung, J., and Kwak, H., 2003, “Bubble Nucleation on Micro Line Heaters,” ASMEJ. Heat Transfer, Vol. 125, pp. 687–692.

    Article  Google Scholar 

  • Lienahard, J. H., and Karimi, A., 1981, “Homogeneous Nucleation and the Spinodal Line,”ASME J. Heat Transfer, Vol. 103, pp. 61–64.

    Article  Google Scholar 

  • Lifshitz L. M. and Kagan Yu., 1972, “Quantum Kinetics of Phase Transitions at Temperature Close to Absolute Zero,”Soviet Phys., JETP. Vol. 30, pp. 206–214.

    Google Scholar 

  • Lin, L., and Pisano, A. P., 1991, “Bubble Forming on a Micro Line Heater,” Micromechanical Sensors, Actuators, and Systems, DSC-Vol. 32, ASME, New York, pp. 147–163.

    Google Scholar 

  • Lin, L. and Pisano, A. P., 1994, “Thermal Bubble Powered Microactuators,”Microsystem Tech., Vol. 1, pp. 51–58.

    Article  Google Scholar 

  • Lin, L. and Pisano, A. P. and Carey. V. P., 1998, “Thermal Bubble Formation on Polysilicon Micro Resistors,”ASME J. Heat Transfer., Vol. 120, pp. 735–742.

    Article  Google Scholar 

  • Maris, H. J., 1995, “Theory of Quantum Nucleation of Bubbles in Liquid helium,”J. Low Temp. Phys., Vol. 98, pp. 403–424.

    Article  Google Scholar 

  • Maris H. J. and Xiong Q., 1989, “Nucleation of Bubbles in Liquid Helium at Negative Pressure,”Phys. Rev. Lett., Vol. 63, pp. 1078–1081.

    Article  Google Scholar 

  • Marston P. L., 1976, “Tensile Strength and Visible Ultrasonic Cavitation of Superfluid 4He,”J. Low Temp. Phys., Vol. 25, pp. 383–407.

    Article  Google Scholar 

  • McCann, H., Clarke, L. J., and Masters, A. P., 1989, “An Experimental Study of Vapor Growth at the Superheat Limit Temperature,”Int. J. Heat Mass Transfer, Vol. 32, pp. 1077–1093.

    Article  Google Scholar 

  • Nielson, N. J., 1985, “History of Thermal Jet Printerhead Development,”HP Journal, Vol. 36, No. 5, pp. 12–13.

    Google Scholar 

  • Oh, S., Seung, S., and Kwak, H., 1999, “A Model of Bubble Nucleation on a Micro Line Heater,”ASME J. Heat Transfer, Vol. 121, pp. 220–225.

    Article  Google Scholar 

  • Oxtoby, D.W., and Evans, R., 1988, “Nonclassical Nucleation Theory for the Gas-Liquid Transition,”J. Chem, Phys., Vol. 89, pp. 7521–7530.

    Article  Google Scholar 

  • Patrick-Yeboch, J. R., and Reid, R. C., 1981, “Superheat-Limit Temperatures of Polar Liquid,”Ind. Eng. Chem. Fundam., Vol. 20, pp. 315–317.

    Article  Google Scholar 

  • Park, H., Byun, K., and Kwak, H., 2003, “Explosive boiling of Liquid Droplet at Their Superheat Limits,” submitted for publication.

  • Park, S., Weng, J.-G., and Tien, C.-L., 2000, “Cavitation and Bubble Nucleation Using Molecular Dynamics Simulation,”Microscale Thermophys. Eng., Vol. 4, pp. 161–175.

    Article  Google Scholar 

  • Porteus, W., and Blander, M., 1975, “Limit of Superheat and Explosive Boiling of Light Hydrocarbons, Halocarbons, and Hydrocarbon Mixtures,”AIChE J., Vol. 21, pp. 560–566.

    Article  Google Scholar 

  • Pransnitz, J. M., 1969,Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice-Hall, New York.

    Google Scholar 

  • Punnathanman, S., and Corti, D. S., 2002, “Homogeneous Bubble Nucleation in Stretched Fluids: Cavity Formation in the Superheated Lennard-Jones Liquid,”Ind. Eng. Chem. Res., Vol. 41, pp. 1113–1121.

    Article  Google Scholar 

  • Rao, M., Berne, B. J., and Kalos, M. H., 1978, “Computer Simulation of the Nucleation and Thermodynamics of Microclusters,”J. Chem. Phys., Vol. 68, pp. 1325–1336.

    Article  Google Scholar 

  • Rayleigh, L., 1917, “On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity,”Philo. Mag., Ser. 6, Vol. 34, pp. 94–98.

    Article  Google Scholar 

  • Schrage, R. W., 1953,A Theoretical Study of Interphase Mass Transfer, Columbia University Press, New York.

    Book  Google Scholar 

  • Shepherd, J. E., and Sturtevant, B., 1982, “Rapid Evaporation at the Superheat Limit,”J. Fluid Mech., Vol. 121. pp. 379–402.

    Article  Google Scholar 

  • Skripov, V. P., 1974,Metastable Liquids, Wiley, New York, Chap. 2.

    Google Scholar 

  • Sinitsyn, E. N., and Skripov, V. P., 1968, “Kinetics of Nucleation in Superheat Liquids,”Russ. J. Phys. Chem., Vol. 42, pp. 440–443.

    Google Scholar 

  • Streitwieser, A., and Heathcock, C. H., 1981,Introduction to Organic Chemistry, Macmillan, London, p. 147.

    Google Scholar 

  • Temperley, H. N. V., 1947, “The Behavior of Water Under Hydrostatic Tension,”Proc. Phys. Soc, Vol. 59, pp. 199–208.

    Article  Google Scholar 

  • Tien, C. L., and Lienhard, J. H., 1979,Statistical Thermodynamics, Hemisphere, Washington, DC, Chap. 9.

    Google Scholar 

  • Van Stralen, S. J. D and Cole, R., 1979,Boiling Phenomena, 1, McGraw-Hill Co.

  • Vogel, A., Schweiger, P., Frieser, A., Asiyo, M. N., and Birngruber, R., 1990, “Intraocular Nd: YAG Laser Surgery ; Light-Tissue Interaction, Damage Range, and Reduction of Collateral Effects,”IEEE J. Quantum Electron, Vol. 26, pp. 2240–2260.

    Article  Google Scholar 

  • Volmer, M., Kinetik der Phasenbildung, 1939, translated by U. S. Department of Intelligense: refer to ATI No. 81935 from the Clearinghouse for Federal and Technical Information.

  • Walrafen, G. E., 1966, “Raman Spectral Studies of the Effects of Temperature on Water and Electrolyte Solutions,”J. Chem. Phys., Vol. 44, pp. 1546–1558.

    Article  Google Scholar 

  • Xiong Q. and Maris H. J., 1991, “Study of Cavitation in Sperfluid Helium-4 at Low Temperatures,”J. Low Temp. Phys., Vol. 82, pp. 105–118.

    Article  Google Scholar 

  • Zeldovich, J. B., 1943, “On the Theory of New Phase Formation; Cavitation,”Acta Physicochimica, U.R.S.S., Vol. 18, pp. 1–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Young Kwak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwak, HY. Vapor Bubble Nucleation: A Microscopic Phenomenon. KSME International Journal 18, 1271–1287 (2004). https://doi.org/10.1007/BF02984241

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02984241

Key Words

Navigation