Skip to main content
Log in

Note: Characterization of aPeanut mottle virus isolate infecting peanut in Israel

  • Virology
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Peanut mottle virus (PeMoV) was identified for the first time in Israel in peanut plants expressing mottle symptoms. Particle morphology, biological properties and serology suggested that this virus belongs to the genusPotyvirus. The characteristics of the Israeli (IL) PeMoV were compared with those of previously reported isolates. Using RT-PCR, a 1393-bp fragment consisting of the helper component — proteinase (HC-Pro) and a 988-bp product containing the coat protein (CP) were amplified, cloned and sequenced. Comparison of the HC-Pro sequences for PeMoV-IL and PeMoV-M (reported previously), showed 98% homology at the amino acid (aa) level. The aa sequence homology of the entire CP of isolate IL and six other PeMoV isolates ranged from 92% to 98%. A phylogenetic analysis carried out using the CP nucleotide sequence data indicated close similarity between PeMoV-IL and an Australian isolate and between two M isolates. The conserved KITC and CCC motifs in the HC-Pro were replaced by KVSC and ASC, respectively, in PeMoV-IL as in strain M. The DAG motif in the CP was replaced by DAA in the PeMoV isolates including IL. These results prompted the examination of aphid transmissibility of PeMoV-IL which were low and variable among experiments. These results differ from a previous report showing high aphid transmission of PeMoV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tools.J. Mol. Biol. 215:403–410.

    PubMed  CAS  Google Scholar 

  2. Atreya, P.L., Lòpez-Moya, J.J., Chu, M., Atreya, C.D. and Pirone, T.P. (1995) Mutational analysis of the coat protein N-terminal amino acids involved in potyvirus transmission by aphids.J. Gen. Virol. 76:265–270.

    Article  PubMed  CAS  Google Scholar 

  3. Brunt, A.A., Crabtree, K., Dallwitz, M.J., Gibbs, A.J., Watson, L. and Zurcher, E.J. [Eds.] (1996) Plant Viruses Online: Descriptions and Lists from the VIDE Database. Version: 20th August 1996. URL.http://biology.anu.edu.au/groups/MES/vide/.

  4. Desbiez, C. and Lecoq, H. (2004) The nucleotide sequence ofWatermelon mosaic virus (WMV, Potyvirus) reveals interspecific recombination between two related potyviruses in the 5′ part of the genome.Arch. Virol. 149:1619–1632.

    Article  PubMed  CAS  Google Scholar 

  5. Dietzgen, R.G., Callaghan, B., Higgins, C.M., Birch, R.G., Chen, K. and Xu, Z. (2001) Differentiation of peanut seedborne Potyviruses and Cucumoviruses by RT-PCR.Plant Dis. 85:989–992.

    Article  CAS  Google Scholar 

  6. Flasinsky, S. and Cassidy, B.G. (1998) Potyvirus aphid transmission requires helper component and homologous coat protein for maximal efficiency.Arch. Virol. 143:2159–2172.

    Article  Google Scholar 

  7. Gillaspie, A.G. Jr., Pittman, R.N., Pinnow, D.L. and Cassidy, B.G. (2000) Sensitive method for testing peanut seed lots for Peanut stripe and Peanut mottle viruss by immunocapture-reverse transcription-polymerase chain reaction.Plant Dis. 84:559–561.

    Article  CAS  Google Scholar 

  8. Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.Nucl. Acids Symp. Ser. 41:95–98.

    CAS  Google Scholar 

  9. Hoffmann, K., Geske, S.M. and Moyer, J.W. (1998) Pathogenesis of tomato spotted wilt virus in peanut plants dually infected with peanut mottle virus.Plant Dis. 82:610–614.

    Article  Google Scholar 

  10. Huet, H., Gal-On, A., Meir, E., Lecoq, H. and Raccah, B. (1994) Mutations in the helper component protease gene of Zucchini yellow mosaic virus affect its ability to mediate aphid transmissibility.J. Gen. Virol. 75:1404–1414.

    Article  Google Scholar 

  11. Jeanmougin, F., Thompson, J.D., Gouy, M., Higgins, D.G. and Gibson, T.J. (1998) Multiple sequence alignment with Clustal X.Trends Biochem. Sci. 23:403–405.

    Article  PubMed  CAS  Google Scholar 

  12. Koenig, R. (1981) Indirect ELISA methods for the broad specificity detection of plant viruses.J. Gen. Virol. 55:53–62.

    Article  Google Scholar 

  13. Kuhn, C.W. (1965) Symptomatology, host range and effect on yield of a seed-transmitted peanut virus.Phytopathology 55:880–884.

    Google Scholar 

  14. Lòpez-Moya, J.J., Wang, R.Y. and Pirone, T.P. (1999) Context of the coat protein DAG motif affects potyvirus transmissibility by aphids.J. Gen. Virol. 80:3281–3288.

    PubMed  Google Scholar 

  15. Paguio, O.R. and Kuhn, C.W. (1973) Purification of a mild mottle strain of Peanut mottle virus.Phytopathology 63:720–724.

    Google Scholar 

  16. Pirone, T.P. and Blanc, S. (1996) Helper-dependent vector transmission of plant viruses.Annu. Rev. Phytopathol. 34:227–248.

    Article  PubMed  CAS  Google Scholar 

  17. Raccah, B., Huet, H. and Blanc, S. (2001) Potyviruses.in: Harris, K.F., Smith, O.P. and Duffus, J.E. [Eds.] Virus — Insect — Plant Interactions. Academic Press, New York, NY. pp. 181–206.

    Chapter  Google Scholar 

  18. Saitou, N. and Nei, M. (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees.Mol. Biol. Evol. 4:406–425.

    PubMed  CAS  Google Scholar 

  19. Singh, B. and Singh, U. (1991) Peanut as a source of protein for human foods.Plant Foods Hum. Nutr. 41:165–177.

    Article  PubMed  CAS  Google Scholar 

  20. Spiegel, S., Scott, S., Bowman-Vance, V., Tam, Y., Galiakparov, N.N. and Rosner, A. (1996) Improved detection of Prunus necrotic ringspot virus by the polymerase chain reaction.Eur. J. Plant Pathol. 102:681–685.

    Article  CAS  Google Scholar 

  21. Teycheney, P.Y. and Dietzgen, R.G. (1994) Cloning and sequence analysis of the coat protein genes of an Australian strain of peanut mottle and an Indonesian ‘blotch’ strain of peanut stripe potyviruses.Virus Res. 31:235–244.

    Article  PubMed  CAS  Google Scholar 

  22. Thornbury, D.W., Patterson, C.A., Dessens, J.T. and Pirone, T.P. (1990) Comparative sequence of the helper component (HC) region of potato virus Y and a HC-defective strain, potato virus C.Virology 178:573–578.

    Article  PubMed  CAS  Google Scholar 

  23. Towbin, H., Staehelin, T. and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proc. Natl. Acad. Sci. USA 76:4350–4354.

    Article  PubMed  CAS  Google Scholar 

  24. Urcuqui-Inchima, S., Haenni, A.L. and Bernardi, F. (2001) Potyvirus proteins: a wealth of functions.Virus Res. 74:157–175.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Spiegel.

Additional information

The nucleotide sequences reported in this manuscript have been deposited in GenBank under the accession numbers DQ868539 and DQ868540.

http://www.phytoparasitica.org posting March 11, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spiegel, S., Sobolev, I., Dombrovsky, A. et al. Note: Characterization of aPeanut mottle virus isolate infecting peanut in Israel. Phytoparasitica 36, 168–174 (2008). https://doi.org/10.1007/BF02981329

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02981329

Key words

Navigation