Skip to main content
Log in

Biochemical changes in sunflower plants due to seed treatment/spray application with biocontrol agents

  • Phytopathology
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The application ofTrichoderma harzianum andPseudomonas fluorescens led to increases in dry matter content, starch, total soluble sugars (TSS) and reducing sugar contents in leaves of sunflower (Helianthus annuus) when done as seed treatment or coupled with spray. There was a significant increase in TSS and reducing sugars in stem tissue after treatment with biocontrol agents. The content of total phenols in leaves increased after treatment at 30 and 60 days after sowing (DAS) and at 30 DAS in stem tissues. Biocontrol agents increased the activities of phenylalanine ammonia lyase (PAL) in leaves and stem tissue after 30 DAS and significantly reduced total phenolic content and PAL activity in the stem at 60 DAS. Following treatment with biocontrol agents, seed lipid content increased, the proportion of linoleic acid increased and that of oleic acid decreased. Application of biocontrol agents to sunflower plants initiated certain biochemical changes, which can be considered to be part of the plant’s defense response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrios, G.N. (1997) Plant Pathology. 4th ed. Academic Press, New York, NY.

    Google Scholar 

  2. Ames, B.N. (1966) Assay of inorganic phosphate and phosphatases.in: Neufeld, E.F. and Ginsburg, V. [Eds.] Methods in Enzymology. Academic Press, New York, NY. vol. 8, p. 115.

    Google Scholar 

  3. Anon. (2004) Package of Practices for Crop of Punjab-Rabi 2003–2004. Directorate of Extension, Punjab Agricultural University, Ludhiana, India. p. 41.

  4. AOAC (1965) Official Methods of Analysis. 10th ed. Washington, D.C.

  5. Baker, R., Elad, Y. and Chet, I. (1984) The controlled experiment in the scientific method with special emphasis on biocontrol.Phytopathology 74:1019–1021.

    Article  Google Scholar 

  6. Balabaa, S.I., Zake, A.Y. and Elshamy, A.M. (1974) Total flavonol and rutin content of the different organs ofSophora japonica L.J. Assoc. Anal. Chem. 57:752–755.

    Google Scholar 

  7. Burrell, M.M. and Rees, T.A. (1974) Metabolism of phenylalanine and tyrosine in rice leaves infected byPyricularia oryzae.Physiol. Plant Pathol. 4:497–508.

    Article  CAS  Google Scholar 

  8. Chang, Ya-C., Chang, Yih-C., Baker, R., Kleifeld, O. and Chet, I. (1986) Increased growth of plants in the presence of the biological control agentTrichoderma harzianum.Plant Dis. 70:145–148.

    Article  Google Scholar 

  9. Christie, W.W. (1972) Lipid Analysis. Pergamon Press, New York, NY. pp. 52–56.

    Google Scholar 

  10. Clegg, K.M. (1956) The application of anthrone reagent to the estimation of starch in cereals.J. Sci. Food Agric. 7:40–44.

    Article  CAS  Google Scholar 

  11. Dalisay, R.F. and Kuç, J.A. (1995) Persistence of induced resistance and enhanced peroxidase and chitinase activities in cucumber plants.Physiol. Mol. Plant Pathol. 47:315–327.

    Article  CAS  Google Scholar 

  12. Dubois, M., Gilles, K.A., Hamilton, J.K., Roberts, P.A. and Smith, F. (1956) Colorimetric method for the determination of sugars and related substances.Anal. Chem. 28:350–356.

    Article  CAS  Google Scholar 

  13. Folch, J., Less, M. and Sloane-Stanley, G.H. (1957) A simple method for isolation and purification of total lipids from animal tissues.J. Biol. Chem. 226:497–509.

    PubMed  CAS  Google Scholar 

  14. Fry, S.C. (1986) Polymer-bound phenols as natural substrates of peroxidases.in: Greppin, H., Penel, C, and Gaspar, T. [Eds.] Molecular and Physiological Aspects of Plant Peroxidase. Université de Genève, Geneva, Switzerland. pp. 169–182.

    Google Scholar 

  15. Harman, G.E. (2001)Trichoderma spp. includingT. harzianum, T. viride, T. koningii, T. hamatum and other species. http://www.nysaes.cornell.edu/ent/biocontrol/pathogens/trichoderma.html

  16. Howell, C.R. (2003) Mechanisms employed byTrichoderma spp. in the biological control of plant diseases. The history and evolution of current concepts.Plant Dis. 87:4–10.

    Article  Google Scholar 

  17. Inbar, J., Abramsky, M., Cohen, D. and Chet, I. (1994) Plant growth enhancement and disease control byTrichoderma harzianum in vegetable seedlings grown under commercial conditions.Eur. J. Plant Pathol. 100:337–346.

    Article  Google Scholar 

  18. Karthikeyan, M., Radhika, K., Mathiyazhagan, S., Bhaskaran, R., Samiyappan, R. and Velazhahan, R. (2006) Induction of phenolics and defense-related enzymes in coconut (Cocos nucifea L.) roots treated with biocontrol agents.Braz. J. Plant Physiol. 18:367–377.

    Article  CAS  Google Scholar 

  19. King, E.O., Ward, M.K. and Raney, D.E. (1954) Two simple media for the demonstration of pyocynin and fluorescein.J. Lab. Clin. Med. 4:301–307.

    Google Scholar 

  20. Kleifeld, O. and Chet, I. (1992)Trichoderma harzianum — interaction with plants and effect on growth response.Plant Soil. 144:267–272.

    Article  Google Scholar 

  21. Kumar, V., Kumar, A., Verma, V.C., Gond, S.K. and Kharnar, R. N. (2007) Induction of defense enzyme inPseudomonas fluorescens treated chickpea roots againstMacrophomina phaseolina.Indian Phytopathol. 60:289–295.

    CAS  Google Scholar 

  22. Leon, A.J., Less, M., Rufener, G.K., Berry, S.T. and Mowers, R.P. (1995) Use of RFLP markers for genetic linkage analysis of oil percentage in sunflower seed.Crop Sci. 35:558–564.

    CAS  Google Scholar 

  23. Lowry, R.R. and Tinsley, I.J. (1976) Rapid colorimetric determination of free fatty acids.J. Am. Oil Chem. Soc. 53:470–472.

    Article  PubMed  CAS  Google Scholar 

  24. Luthra, R., Munshi, S.K. and Sukhija, P.S. (1991) Relationship of carbohydrate metabolism with lipid biosynthesis in developing sunflower (Helianthus annuus L.) seeds.J. Plant Physiol. 137:312–318.

    CAS  Google Scholar 

  25. Munshi, S.K., Vats, S., Dhillon, K.S. and Sukhija, P.S. (1990) Lipid biosynthesis in seed of mustard (Brassica juncea) influenced by zinc and sulphur deficiency.Physiol. Plant. 80:102–108.

    Article  CAS  Google Scholar 

  26. Nair, P.M. and Vaidyanathan, C.S. (1964) A colorimetric method for determination of pyrocatechol and related substances.Anal. Biochem. 7:315–321.

    Article  PubMed  CAS  Google Scholar 

  27. Nelson, N. (1944) A photometric adaptation of the Somogyi method for determination of glucose.J. Biol. Chem. 153:375–380.

    CAS  Google Scholar 

  28. Ozbay, N. and Newman, S.E. (2004) Biological control withTrichoderma spp. with emphasis onT. harzianum.Pak. J. Biol. Sci. 7:478–484.

    Article  Google Scholar 

  29. Roco, A. and Perez, L.M. (2001)In vitro biocontrol activity ofTrichoderma harzianum onAlternaria alternata in the presence of growth regulators.Electron. J. Biotechnol. 4:68–73.

    Google Scholar 

  30. Roughan, P.G. and Batt, D. (1968) Quantitative analysis of sulfolipids and galactolipids in plant tissue.Anal. Biochem. 22:74–88.

    Article  PubMed  CAS  Google Scholar 

  31. Sharma, S., Singh, J., Munshi, G.D. and Munshi, S.K. (2008) Biochemical changes associated with application of biocontrol agents on Indian mustard leaves from plants infected with Alternaria blight.Arch. Phytopathol. Plant Prot. 44 (in press).

  32. Shivakumar, G. and Sharma, R.C. (2003) Induced biochemical changes due to seed bacterization byPseudomonas fluorescens in maize plants.Indian Phytopathol. 56:134–137.

    Google Scholar 

  33. Spanu, P., Boller, T., Ludwig, A., Wiemken, A., Faccio, A. and Bonafante-Fasolo, P. (1989) Chitinases in roots of mycorrhizalAllium porrum: regulation and localization.Planta 177:447–455.

    Article  CAS  Google Scholar 

  34. Spanu, P. and Bonafante-Fasolo, P. (1988) Cell wall bound peroxidase activity in roots of mycorrhizalAllium porrum.New Phytol. 109:119–124.

    Article  CAS  Google Scholar 

  35. Srinivasan, N. (2003) Efficacy ofPseudomonas fluorescens against leaf rot in rot affected coconut palms.Indian Phytopathol. 56:210–211.

    Google Scholar 

  36. Swain, T. and Hillis, W.E. (1959) The phenolic constituents ofPrunus domestica.I. The quantitative analysis of phenolic constituents.J. Sci. Food Agric. 10:63–68.

    Article  CAS  Google Scholar 

  37. Urdangarin, C., Regente, M.C., Jorrin, J. and de la Canal, L. (1999) Sunflower coumarin phytoalexins inhibit the growth of the virulent pathogenSclerotinia sclerotiorum.J. Phytopathol. 147:441–443.

    Article  CAS  Google Scholar 

  38. Whipps, J.M. (1997) Developments in the biological control of soil-borne plant pathogens.Adv. Bot. Res. 26:1–134.

    Article  Google Scholar 

  39. Whipps, J.M. (2001) Microbial interactions and biocontrol in the rhizosphere.J. Exp. Bot. 52:487–511.

    PubMed  CAS  Google Scholar 

  40. Yedidia, I., Benhamou, N. and Chet, I. (1999) Induction of defense responses in cucumber plants by biocontrol agentTrichoderma harzianum.Appl. Environ. Microbiol. 65:1061–1070.

    PubMed  CAS  Google Scholar 

  41. Zak, B. (1957) Simple rapid microtechnique for serum total cholesterol.Am. J. Clin. Pathol. 27:583–588.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Munshi.

Additional information

http://www.phytoparasitica.org posting August 6, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamba, P., Sharma, S., Munshi, G.D. et al. Biochemical changes in sunflower plants due to seed treatment/spray application with biocontrol agents. Phytoparasitica 36, 388–399 (2008). https://doi.org/10.1007/BF02980818

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02980818

Key words

Navigation