Skip to main content
Log in

The variational multiscale method for laminar and turbulent flow

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

The present article reviews the variational multiscale method as a framework for the development of computational methods for the simulation of laminar and turbulent flows, with the emphasis placed on incompressible flows. Starting with a variational formulation of the Navier-Stokes equations, a separation of the scales of the flow problem into two and three different scale groups, respectively, is shown. The approaches resulting from these two different separations are interpreted against the background of two traditional concepts for the numerical simulation of turbulent flows, namely direct numerical simulation (DNS) and large eddy simulation (LES). It is then focused on a three-scale separation, which explicitly distinguishes large resolved scales, small resolved scales, and unresolved scales. In view of turbulent flow simulations as a LES, the variational multiscale method with three separated scale groups is refered to as a “variational multiscale LES”. The two distinguishing features of the variational multiscale LES in comparison to the traditional LES are the replacement of the traditional filter by a variational projection and the restriction of the effect of the unresolved scales to the smaller of the resolved scales. Existing solution strategies for the variational multiscale LES are presented and categorized for various numerical methods. The main focus is on the finite element method (FEM) and the finite volume method (FVM). The inclusion of the effect of the unresolved scales within the multiscale environment via constant-coefficient and dynamic subgrid-scale modeling based on the subgrid viscosity concept is also addressed. Selected numerical examples, a laminar and two turbulent flow situations, illustrate the suitability of the variational multiscale method for the numerical simulation of both states of flow. This article concludes with a view on potential future research directions for the variational multiscale method with respect to problems of fluid mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baiocchi, C., Brezzi, F. and Franca, L.P. (1993). Virtual bubbles and Galerkin-least-squares type methods.Comput. Methods Appl. Mech. Engrg.,105, 125–141.

    Article  MATH  MathSciNet  Google Scholar 

  2. Barbone, P. and Harari, I. (2001). Nearly H1-optimal finite element methods.Comput. Methods Appl. Mech. Engrg.,190, 5679–5690.

    Article  MATH  MathSciNet  Google Scholar 

  3. Bardina, J., Ferziger, J.H. and Reynolds, W.C. (1983). Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows. Report TF-19, Thermosciences Division, Department of Mechanical Engineering, Stanford University.

  4. Baumann, C.E. and Oden, J.T. (1999). A discontinuous hp finite element method for the Euler and Navier-Stokes equations,Int. J. Numer. Meth. Fluids,31, 79–95.

    Article  MATH  MathSciNet  Google Scholar 

  5. Boussinesq, J. (1877). Thorie de l’Écoulement Tourbillant.Mem. Présentés par Divers Savants Acad. Sci. Inst. Fr.,23, 46–50.

    Google Scholar 

  6. Bradshaw, P. (1994). Turbulence: the chief outstanding difficulty of our subject.Exp. Fluids,16, 203–216.

    Article  Google Scholar 

  7. Brezzi, F. (2000). Interacting with the subgrid world. In Griffiths, D.F. and Watson, G.A. (Eds.): Numerical Analysis 1999, Chapman & Hall/CRC, Boca Raton, FL, 69–82.

    Google Scholar 

  8. Brezzi, F. (2002). Recent results in the treatment of subgrid scales. In Blouza, A., Danaila, I., Joly, P., Kaber, S.M., Lucquin, B., Murat, F. and Postel, M. (Eds.):Editeurs ESAIM: Proceedings Volume 11, 61–84.

  9. Brezzi, F., Bristeau, M.-O., Franca, L.P., Mallet, M. and Roge, G. (1992). A relationship between stabilized finite element methods and the Galerkin method with bubble functions.Comput. Methods Appl. Mech. Engrg.,96, 117–129.

    Article  MATH  MathSciNet  Google Scholar 

  10. Brezzi, F. and Fortin, M. (1991),Mixed and hybrid finite element methods, Springer, New York.

    MATH  Google Scholar 

  11. Brezzi, F., Franca, L.P., Hughes, T.J.R. and Russo, A. (1996). Stabilization techniques and subgrid scale capturing. Pubb. 1011, Istituto di Analisi Numerica, Pavia.

    Google Scholar 

  12. Brezzi, F., Franca, L.P., Hughes, T.J.R. and Russo, A. (1997). “b=∫ g”.Comput. Methods Appl. Mech. Engrg.,145, 329–339.

    Article  MATH  MathSciNet  Google Scholar 

  13. Brezzi, F., Franca, L.P. and Russo, A. (1998). Further considerations on residual-free bubbles for advective-diffusive equations.Comput. Methods Appl. Mech. Engrg.,166, 25–33.

    Article  MATH  MathSciNet  Google Scholar 

  14. Brezzi, F., Houston, P., Marini, D. and Süli, E. (2000). Modeling subgrid viscosity for advection-diffusion problems.Comput. Methods Appl. Mech. Engrg.,190, 1601–1610.

    Article  MATH  Google Scholar 

  15. Brezzi, F. and Marini, L.D. (2002). Augmented spaces, two-level methods and stabilizing subgrids.Int. J. Numer. Meth. Fluids,40, 31–46.

    Article  MATH  MathSciNet  Google Scholar 

  16. Brezzi, F. and Russo, A. (1994). Choosing bubbles for advection-diffusion problems.Math. Models Methods Appl. Sci.,4, 571–587.

    Article  MATH  MathSciNet  Google Scholar 

  17. Brooks, A.N. and Hughes, T.J.R. (1982). Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations.Comput. Methods Appl. Mech. Engrg.,32, 199–259.

    Article  MATH  MathSciNet  Google Scholar 

  18. Buice, C.U. and Eaton, J.K. (1997). Experimental investigation of flow through an asymmetric plane diffuser. Report TSD-107, Thermosciences Group, Department of Mechanical Engineering, Stanford University.

  19. Calo, V.M. (2004). Residual-based multiscale turbulence modeling: finite volume simulations of bypass transition. PhD Thesis, Department of Civil and Environmental Engineering, Stanford University (http://www.ices.utexas.edu/victor/vmc-thesis.pdf).

  20. Carati, D., Ghosal, S. and Moin, P. (1995). On the representation of backscatter in dynamic localization models.Phys. Fluids,7, 606–616.

    Article  MATH  Google Scholar 

  21. Cockburn, B., Karniadakis, G.E. and Shu, C.-W. (Eds.) (2000). Discontinuous Galerkin methods— theory, computation and applications,Lecture Notes in Computational Science and Engineering,11, Springer, Berlin.

    MATH  Google Scholar 

  22. Codina, R. (1998). Comparison of some finite element methods for solving the diffusion-convection-reaction equation.Comput. Methods Appl. Mech. Engrg.,156, 185–210.

    Article  MATH  MathSciNet  Google Scholar 

  23. Codina, R. (2001). A stabilized finite element method for generalized stationary incompressible flows.Comput. Methods Appl. Mech. Engrg.,190, 2681–2706.

    Article  MATH  MathSciNet  Google Scholar 

  24. Codina, R. (2002). Stabilized finite element approximation of transient incompressible flows using orthogonal subscales.Comput. Methods Appl. Mech. Engrg.,191, 4295–4321.

    Article  MATH  MathSciNet  Google Scholar 

  25. Collis, S.S. (2001). Monitoring unresolved scales in multiscale turbulence modeling.Phys. Fluids,13, 1800–1806.

    Article  Google Scholar 

  26. Collis, S.S. (2002). Discontinuous Galerkin methods for turbulence simulation. In: Proceedings of the Summer Program 2002, Center for Turbulence Research, Stanford University and NASA Ames Research Center, 155–167.

  27. Collis, S.S. (2002). The DG/VMS method for unified turbulence simulation. AIAA Paper 2002-3124, St. Louis, Missouri, June 24–27.

  28. Deardorff, J.W. (1970). A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers.J. Fluid Mech.,41, 453–465.

    Article  MATH  Google Scholar 

  29. Domaradzki, J.A., Loh, K.C. and Yee, P.P. (2002). Large eddy simulations using the subgridscale estimation model and truncated Navier-Stokes dynamics.Theoret. Comput. Fluid Dyn.,15, 421–450.

    Article  MATH  Google Scholar 

  30. Donea, J. and Huerta, A. (2003).Finite element methods for flow problems, John Wiley & Sons, Chichester.

    Google Scholar 

  31. Dubois, T., Jauberteau, F. and Temam, R. (1999).Dynamic multilevel methods and the numerical simulation of turbulence, Cambridge University Press, Cambridge.

    Google Scholar 

  32. Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L. and Taylor, R.L. (2002). Continuous/disontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity.Comput. Methods Appl. Mech. Engrg.,191, 3669–3750.

    Article  MATH  MathSciNet  Google Scholar 

  33. Ethier, C.R. and Steinman, D.A. (1994). Exact fully 3D Navier-Stokes solution for benchmarking.Int. J. Number. Meth. Fluids,19, 369–375.

    Article  MATH  Google Scholar 

  34. Ferziger, J.H. and Peric, M. (1999).Computational methods for fluid dynamics, 2nd edition, Springer, Berlin.

    MATH  Google Scholar 

  35. Farhat, C., Harari, I. and Franca, L.P. (2001). The discontinuous enrichment method.Comput. Methods Appl. Mech. Engrg.,190, 6455–6479.

    Article  MATH  MathSciNet  Google Scholar 

  36. Farhat, C., Harari, I. and Hetmaniuk, U. (2003). The discontinuous enrichment method for multiscale analysis.Comput. Methods Appl. Mech. Engrg.,192, 3195–3209.

    Article  MATH  MathSciNet  Google Scholar 

  37. Farhat, C., Rajasekharan, A. and Koobus, B. (2006). A dynamic variational multiscale method for large eddy simulations on unstructured meshes.Comput. Methods Appl. Mech. Engrg.,195, 1667–1691.

    Article  MATH  MathSciNet  Google Scholar 

  38. Franca, L.P. and Farhat, C. (1995). Bubble functions prompt unusual stabilized finite element methods.Comput. Methods Appl. Mech. Engrg.,123, 299–308.

    Article  MATH  MathSciNet  Google Scholar 

  39. Franca, L.P., Farhat, C., Lesoinne, M. and Russo, A. (1998). Unusual stabilized finite element methods and residual free bubbles.Int. J. Numer. Meth. Fluids,27, 159–168.

    Article  MATH  MathSciNet  Google Scholar 

  40. Franca, L.P. and Frey, S. (1992). Stabilized finite element methods: II. The incompressible Navier-Stokes equations.Comput. Methods Appl. Mech. Engrg.,99, 209–233.

    Article  MATH  MathSciNet  Google Scholar 

  41. Franca, L.P., Frey, S. and Hughes, T.J.R. (1992). Stabilized finite element methods: I. Application to the advective-diffusive model.Comput. Methods Appl. Mech. Engrg.,95, 253–276.

    Article  MATH  MathSciNet  Google Scholar 

  42. Franca, L.P. and Macedo, A.P. (1998). A two-level finite element method and its application to the Helmholtz equation.Int. J. Numer. Meth. Engrg.,43, 23–32.

    Article  MATH  MathSciNet  Google Scholar 

  43. Franca, L.P., Madueira, A.L. and Valentin, F. (2005). Towards multiscale functions: enriching finite element spaces with local but not bubble-like functions.Comput. Methods Appl. Mech. Engrg.,194, 3006–3021.

    Article  MATH  MathSciNet  Google Scholar 

  44. Franca, L.P. and Nesliturk, A. (2001). On a two-level finite element method for the incompressible Navier-Stokes equations.Int. J. Number. Meth. Engrg.,52, 433–453.

    Article  MATH  Google Scholar 

  45. Franca, L.P., Nesliturk, A. and Stynes, M. (1998). On the stability of residual-free bubbles for convection-diffusion problems and their approximation by a two-level finite element method.Comput. Methods Appl. Mech. Engrg.,166, 35–49.

    Article  MATH  MathSciNet  Google Scholar 

  46. Franca, L.P. and Oliveira, S.P. (2003). Pressure bubbles stabilization features in the Stokes problem.Comput. Methods Appl. Mech. Engrg.,192, 1929–1937.

    Article  MATH  MathSciNet  Google Scholar 

  47. Franca, L.P., Ramalho, J.V.A. and Valentin, F. (2005). Multiscale and residual-free bubble functions for reaction-advection-diffusion problems.Int. J. Multiscale Comput. Engrg.,3, 297–312.

    Article  Google Scholar 

  48. Franca, L.P. and Russo, A. (1996). Approximation of the Stokes problem by residual-free macro bubbles.East-West J. Numer. Math.,4, 265–278.

    MATH  MathSciNet  Google Scholar 

  49. Franca, L.P. and Valentin, F. (2000). On an improved unusual stabilized finite element method for the advective-reactive-diffusive equation.Comput. Methods Appl. Mech. Engrg.,190, 1785–1800.

    Article  MATH  MathSciNet  Google Scholar 

  50. Fröhlich, J. and Rodi, W. (2002). Introduction to large eddy simulation of turbulent flows. In Launder, B.E. and Sandham, N.D. (Eds.):Closure Strategies for Turbulent and Transitional Flows, Cambridge University Press, Cambridge, 267–298.

    Google Scholar 

  51. Gelhard, T., Lube, G., Olshanskii, M.A. and Starcke, J.H. (2005). Stabilized finite element schemes with LBB-stable elements for incompressible flows.J. Comp. Appl. Math.,177, 243–267.

    Article  MATH  MathSciNet  Google Scholar 

  52. Germano, M. (1992). Turbulence: the filtering approach.J. Fluid Mech.,238, 325–336.

    Article  MATH  MathSciNet  Google Scholar 

  53. Germano, M., Piomelli, U., Moin, P. and Cabot, W.H. (1991). A dynamic subgrid-scale eddy viscosity model.Phys. Fluids A,3, 1760–1765.

    Article  MATH  Google Scholar 

  54. Ghosal, S., Lund, T.S., Moin, P. and Akselvoll, K. (1995). A dynamic localization model for large-eddy simulation of turbulent flows.J. Fluid Mech.,286, 229–255.

    Article  MATH  MathSciNet  Google Scholar 

  55. Ghosal, S. and Moin, P. (1995). The basic equations for the large-eddy simulation of turbulent flows in complex geometry.J. Comput. Phys.,118, 24–37.

    Article  MATH  MathSciNet  Google Scholar 

  56. Gravemeier, V. (2003). The variational multiscale method for laminar and turbulent incompressble flow. PhD Thesis, Report No. 40, Institute of Structural Mechanics, University of Stuttgart (http://www.uni-stuttgart.de/ibs/publications/phd/2000/fulltext/phdgravem.pdf).

  57. Gravemeier, V. (2004). Variational multiscale large eddy simulation of turbulent flows using a finite volume method. In:Annual Research Briefs—2004, Center for Turbulence Research, Stanford University and NASA Ames Research Center, 131–144.

  58. Gravemeier, V. (2006). Scale-separating operators for variational multiscale large eddy simulation of turbulent flows.J. Comput. Phys.,212, 400–435.

    Article  MATH  MathSciNet  Google Scholar 

  59. Gravemeier, V. (2006). Variational multiscale large eddy simulation of turbulent flow in a diffuser.Comput. Mech., in press, available online.

  60. Gravemeier, V. (2006). A consistent dynamic localization model for large eddy simulation of turbulent flows based on a variational formulation.J. Comput. Phys., in press, available online.

  61. Gravemeier, V., Wall, W.A. and Ramm, E. (2004). A three-level finite element method for the instationary incompressible Navier-Stokes equations.Comput. Methods Appl. Mech. Engrg.,193, 1323–1366.

    Article  MATH  MathSciNet  Google Scholar 

  62. Gravemeier, V., Wall, W.A. and Ramm, E. (2004). Large eddy simulation of turbulent incompressible flows by a three-level finite element method.Int. J. Numer. Meth. Fluids.,48, 1067–1099.

    Article  MathSciNet  Google Scholar 

  63. Gresho, P.M. and Sani, R.L. (1998).Incompressible flow and the finite element method: advection-diffusion and isothermal laminar flow, John Wiley & Sons, Chichester.

    MATH  Google Scholar 

  64. Guermond, J.-L. (1999). Stabilization of Galerkin approximations of transport equations by subgrid modeling.Math. Mod. Num. Anal.,33, 1293–1316.

    Article  MATH  MathSciNet  Google Scholar 

  65. Guermond J.-L., Oden, J.T. and Prudhomme, S. (2004). Mathematical perspectives on large eddy simulation models for turbulent flows.J. Math. Fluid Mech.,6, 194–248.

    Article  MATH  MathSciNet  Google Scholar 

  66. Ham, F., Apte, S., Iaccarino, G., Wu, X., Herrmann, M., Constantinescu, G., Mahesh, K. and Moin, P. (2003). Unstructured LES of reacting multiphase flows in realistic gas turbine combustors. In:Annual Research Briefs—2003, Center for Turbulence Research, Stanford University and NASA Ames Research Center, 139–160.

  67. Ham, F. and Iaccarino, G. (2004). Energy conservation in collocated discretization schemes on unstructured meshes. In:Annual Research Briefs—2004, Center for Turbulence Research, Stanford University and NASA Ames Research Center, 3–14.

  68. Hansbo, P. and Szepessy, A. (1990). A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations.Comput. Methods Appl. Mech. Engrg.,84, 175–192.

    Article  MATH  MathSciNet  Google Scholar 

  69. Harari, I., Franca, L.P. and Oliveira, S.P. (2001). Streamline design of stability parameters for advection-diffusion problems.J. Comput. Phys.,171, 115–131.

    Article  MATH  Google Scholar 

  70. Haselbacher, A. and Vasilyev, O. (2003). Commutative discrete filtering on unstructured grids based on least-squares techniques.J. Comput. Phys.,187, 197–211.

    Article  MATH  Google Scholar 

  71. Haworth, D.C. and Jansen, K. (2000). Large-eddy simulation on unstructured deforming meshes: towards reciprocating IC engines.Comput. Fluids,29, 493–524.

    Article  Google Scholar 

  72. Hirsch, C. (1988),Numerical computation of internal and external flows, Vol. I: Fundamentals of numerical discretization, John Wiley & Sons, New York.

    Google Scholar 

  73. Hirsch, C. (1990),Numerical computation of internal and external flows, Vol. II: Computational methods for inviscid and viscous flows, John Wiley & Sons, New York.

    Google Scholar 

  74. Holmen, J., Hughes, T.J.R., Oberai, A.A. and Wells, G.N. (2004). Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow.Phys. Fluids,16, 824–827.

    Article  Google Scholar 

  75. Hou, T.Y. and Wu, X.-H. (1997). A multiscale finite element method for elliptic problems in composite materials and porous media.J. Comput. Phys.,134, 169–189.

    Article  MATH  MathSciNet  Google Scholar 

  76. Hughes, T.J.R. (1995). Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods.Comput. Methods Appl. Mech. Engrg.,127, 387–401.

    Article  MATH  MathSciNet  Google Scholar 

  77. Hughes, T.J.R. (2000).The finite element method: linear static and dynamic finite element analysis, Dover, Mineola, NY.

    Google Scholar 

  78. Hughes, T.J.R., Engel, G., Mazzei, L. and Larson, M.G. (2000). The continuous Galerkin method is locally conservative.J. Comput. Phys.,163, 467–488.

    Article  MATH  MathSciNet  Google Scholar 

  79. Hughes, T.J.R., Feijoo, G.R., Mazzei, L. and Quincy, J.-B. (1998). The variational multiscale method-a paradigm for computational mechanics.Comput. Methods Appl. Mech. Engrg.,166, 3–24.

    Article  MATH  MathSciNet  Google Scholar 

  80. Hughes, T.J.R., Franca, L.P. and Balestra, M. (1986). A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accomodating equal-order interpolation.Comput. Methods Appl. Mech. Engrg. 59, 85–99.

    Article  MATH  MathSciNet  Google Scholar 

  81. Hughes, T.J.R., Franca, L.P. and Hulbert, G.M. (1989). A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations.Comput. Methods. Appl. Mech. Engrg. 73, 173–189.

    Article  MATH  MathSciNet  Google Scholar 

  82. Hughes, T.J.R., Hauke, G., Jansen, K. and Johan, Z. (1994). Stabilized finite element methods in fluids: inspirations, origins, status and recent developments. In Hughes, T.J.R., Oñate, E. and Zienkiewicz, O.C. (Eds.):Recent Developments in Finite Element Analysis, CIMNE, Barcelona, 272–292.

    Google Scholar 

  83. Hughes, T.J.R., Mazzei, L. and Jansen, K.E. (2000). Large eddy simulation and the variational multiscale method.Comput. Visual. Sci.,3, 47–59.

    Article  MATH  Google Scholar 

  84. Hughes, T.J.R., Mazzei, L., Oberai, A.A. and Wray, A.A. (2001). The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence.Phys. Fluids,13, 505–512.

    Article  Google Scholar 

  85. Hughes, T.J.R., Oberai, A.A. and Mazzei, L. (2001). Large eddy simulation of turbulent channel flows by the variational multiscale method.Phys. Fluids,13, 1784–1799.

    Article  Google Scholar 

  86. Hughes, T.J.R., Scovazzi, G. and Franca, L.P. (2004). Multiscale and stabilized methods. In Stein, E., de Borst, R. and Hughes, T.J.R. (Eds.):Encyclopedia of Computational Mechanics, John Wiley & Sons, Chichester.

    Google Scholar 

  87. Hughes, T.J.R. and Wells, G.N. (2005). Conservation properties for the Galerkin and stabilised forms of the advection-diffusion and incompressible Navier-Stokes equations.Comput. Methods Appl. Mech. Engrg. 194, 1141–1159.

    Article  MATH  MathSciNet  Google Scholar 

  88. Hughes, T.J.R., Wells, G.N. and Wray, A.A. (2004). Energy transfers and spectral eddy viscosity in large eddy simulations of homogeneous isotropic turbulence: comparison of dynamic Smagorinsky and multiscale models over a range of discretizations.Phys. Fluids,16, 4044–4052.

    Article  MathSciNet  Google Scholar 

  89. Idelsohn, S.R. and Oñate, E. (1994). Finite volumes and finite elements: two “good friends’. Int J.Numer. Meth. Engrg.,37, 3323–3341.

    Article  MATH  Google Scholar 

  90. Jansen, K.E. (1999). A stabilized finite element method for computing turbulence.Comput. Methods Appl. Mech. Engrg.,174, 299–317.

    Article  MATH  MathSciNet  Google Scholar 

  91. Jansen, K.E., Collis, S.S., Whiting, C. and Shakib, F. (1999). A better consistency for low-order stabilized finite element methods.Comput. Methods Appl. Mech. Engrg. 174, 153–170.

    MATH  MathSciNet  Google Scholar 

  92. Jansen, K.E. and Tejada-Martinez, A.E. (2002). An evaluation of the variational multiscale model for large-eddy simulation while using a hierarchical basis.AIAA Paper 2002-0283, Reno, NV, January 14–17.

  93. Jeanmart, H. and Winckelmans, G.S. (2002). Comparison of recent dynamic subgrid-scale models in turbulent channel flow. In:Proceedings of the Summer Program 2002, Center for Turbulence Research, Stanford University and NASA Ames Research Center, 105–116.

  94. John, V. (2004).Large eddy simulation of turbulent incompressible flows: analytical and numerical results for a class of LES models, Lecture Notes in Computational Science and Engineering,34, Springer, Berlin.

    MATH  Google Scholar 

  95. John, V. and Kaya, S. (2005). A finite element variational multiscale method for the Navier-Stokes equations.SIAM J. Sci. Comp.,26, 1485–1503.

    Article  MATH  MathSciNet  Google Scholar 

  96. John, V., Kaya, S. and Layton, W.J. (2005). A two-level variational multiscale method for convection-diffusion equations.Technical Report TR-MATH 05-02, Department of Mathematics, University of Pittsburgh.

  97. Johnson, C. and Saranen, J. (1986). Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations.Math. of Comp. 47, 1–18.

    Article  MATH  MathSciNet  Google Scholar 

  98. Kaltenbach, H.-J., Fatica, M., Mittal, R., Lund, T.S. and Moin, P. (1999). Study of flow in a planar asymmetric diffuser using large-eddy simulation.J. Fluid. Mech. 390, 151–185.

    Article  MATH  Google Scholar 

  99. Karamanos, G.S. and Karniadakis, G.E. (2000). A spectral vanishing viscosity method for large-eddy simulations.J. Comput. Phys. 163, 22–50.

    Article  MATH  MathSciNet  Google Scholar 

  100. Kaya, S. and Layton, W.J. (2003). Subgrid-scale eddy viscosity methods are variational multi-scale methods.Technical Report TR-MATH 03-05, Department of Mathematics, University of Pittsburgh.

  101. Kim, D. and Choi, H. (2000). A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids.J. Comput. Phys.,162, 411–428.

    Article  MATH  MathSciNet  Google Scholar 

  102. Kim, J. and Moin, P. (1985). Application of a fractional-step method to incompressible Navier-Stokes equations.J. Comp. Phys.,21, 308–323.

    Article  MathSciNet  Google Scholar 

  103. Koobus, B. and Farhat, C. (2004). A variational multiscale method for the large eddy simulation of compressible turbulent flows on unstructured meshes—application to vortex shedding.Comput. Methods Appl. Mech. Engrg.,193, 1367–1383.

    Article  MATH  MathSciNet  Google Scholar 

  104. Kolmogorov, A.N. (1941). The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. (in Russian), Dokl. Akad. Nauk SSSR,30, 299–303.

    Google Scholar 

  105. Lallemand, M.H., Steve, H. and Dervieux, A. (1992). Unstructured multigridding by volume agglomeration: current status.Comput. Fluids,21, 397–433.

    Article  MATH  Google Scholar 

  106. Layton, W.J. (2003). A mathematical introduction to large eddy simulation.Technical Report TR-MATH 03-03, Department of Mathematics, University of Pittsburgh.

  107. Loenard, A. (1974). Energy cascade in large eddy simulation of turbulent fluid flow.Adv. Geophys.,18A, 237–248.

    Google Scholar 

  108. Lesieur, M. and Metais, O. (1996). New trends in large-eddy simulations of turbulence.Ann. Rev. Fluid Mech.,28, 45–82.

    Article  MathSciNet  Google Scholar 

  109. Lilly, D.K. (1967). The representation of small-scale turbulence in numerical simulation experiments. In:Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, Yorktown Heights, NY.

  110. Lilly, D.K. (1992). A proposed modification of the Germano subgrid-scale closure method.Phys. Fluids A,4, 633–635.

    Article  Google Scholar 

  111. Lund, T.S. (1997). On the use of discrete filters for large eddy simulation. In:Annual Research Briefs—1997, Center for Turbulence Research, Stanford University and NASA Ames Research Center, 83–95.

  112. Mahesh, K., Constantinescu, G. and Moin, P. (2004). A numerical method for large-eddy simulation in complex geometries.J. Comput. Phys.,197, 215–240.

    Article  MATH  Google Scholar 

  113. Marsden, A.L., Vasilyev, O. and Moin, P. (2002). Construction of commutative filters for LES on unstructured meshes.J. Comput. Phys.,175, 584–603.

    Article  MATH  Google Scholar 

  114. Mavriplis, D.J. (1997). Adaptive meshing techniques for viscous flow calculations on mixed element unstructured meshes.ICASE-Report 97-20, NASA Langley Research Center, Hampton, VA.

    Google Scholar 

  115. Meneveau, C. and Katz, J. (2000). Scale-invariance and turublence models for large-eddy simulation.Ann. Rev. Fluid Mech.,32, 1–32.

    Article  MathSciNet  Google Scholar 

  116. Moin, P. (2002). Advances in large eddy simulation methodology for complex flows.Int. J. of Heat Fluid Flows,23, 710–720.

    Article  Google Scholar 

  117. Moin, P. and Mahesh, K. (1998). Direct numerical simulation: a tool in turbulence research.Ann. Rev. Fluid Mech.,30, 539–578.

    Article  MathSciNet  Google Scholar 

  118. Moser, R.D., Kim, J. and Mansour, N.N. (1999). Direct numerical simulation of turbulent channel flow up toRe τ=590.Phys. Fluids,11, 943–945.

    Article  MATH  Google Scholar 

  119. Mullen, J.S. and Fischer, P.F. (1999). Filtering techniques for complex geometry fluid flows.Comm. Numer. Meth. Engrg.,15, 9–18.

    Article  MATH  MathSciNet  Google Scholar 

  120. Nesliturk, A.I. (1999). Approximating the incompressible Navier Stokes equations using a two level finite element method. PhD Thesis, University of Colorado, Denver.

  121. Nesliturk, A.I. and Harari, I. (2003). The nearly-optimal Petrov-Galerkin method for convection-diffusion problems.Comput. Methods Appl. Mech. Engrg.,192, 2501–2519.

    Article  MATH  MathSciNet  Google Scholar 

  122. Oberai, A.A., Gravemeier, V. and Burton, G.C. (2004). Transfer of energy in the variational multiscale formulation of LES. In:Proceedings of the Summer Program 2004, Center for Turbulence Research, Stanford University and NASA Ames Research Center, 123–132.

  123. Oberai, A.A. and Hughes, T.J.R. (2002). The variational multiscale formulation of LES: channel flow atRe τ=590.AIAA Paper 2002-1056, Reno, NV, January 14–17.

  124. Oberai, A.A. and Wanderer, J. (2005). A dynamic approach for evaluating parameters in a numerical method.Int. J. Numer. Meth. Engrg.,62, 50–71.

    Article  MATH  MathSciNet  Google Scholar 

  125. Oberai, A.A. and Wanderer, J. (2005). Variational fomulation of the Germano identity for the Navier-Stokes equations.Journal of Turbulence,6, 1–17.

    Article  MathSciNet  Google Scholar 

  126. Obi, S., Aoki, K. and Masuda, S. (1993). Experimental and computational study of turbulent separating flow in an asymmetric plane diffuser.Ninth Symp. on Turbulent Shear, Flows, Kyoto, Japan, August 16–19.

  127. Oñate, E., Garcia, J. and Idelsohn, S. (1997). Computation of the stabilization parameter for the finite element solution of advective-diffusive problems.Int. J. Numer. Meth. Fluids,25, 1385–1407.

    Article  MATH  Google Scholar 

  128. Oñate, E. (1998). Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems.Comput. Methods Appl. Mech. Engrg.,151, 233–265.

    Article  MATH  MathSciNet  Google Scholar 

  129. Oñate, E. (2000). A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation.Comput. Methods Appl. Mech. Engrg.,182, 355–370.

    Article  MATH  MathSciNet  Google Scholar 

  130. Piomelli, U. (1999). Large-eddy simulation: achievements and challenges.Progress in Aerospace Science,35, 335–362.

    Article  Google Scholar 

  131. Pope, S.B. (2000).Turbulent flows, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  132. Ramakrishnan, S. (2004). Towards multi-scale modeling for turbulence simulation in complex geometries. PhD Thesis, Rice University, Houston, Texas.

    Google Scholar 

  133. Ramakrishnan, S. and Collis, S.S. (2002). Variational multiscale modeling for turbulence control.AIAA Paper 2002–3280, Houston, Texas, June 24–27.

  134. Ramakrishnan, S. and Collis, S.S. (2004). Multiscale modeling for turbulence simulation in complex geometries.AIAA Paper 2004-241, Reno, Nevada, January 5–8.

  135. Richardson, L.F. (1922). Weather prediction by numerical process, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  136. Rogallo, R.S. and Moin, P. (1984). Numerical simulation of turbulent flows.Ann. Rev. Fluid Mech.,16, 99–137.

    Article  Google Scholar 

  137. Russo, A. (1996). Bubble stabilization of finite element methods for the linearized incompressible Navier-Stokes equations.Comput. Methods Appl. Mech. Engrg.,132 335–343.

    Article  MATH  MathSciNet  Google Scholar 

  138. Sagaut, P. (2002).Large eddy simulation for incompressible flows, 2nd edition, Springer, Berlin.

    MATH  Google Scholar 

  139. Sagaut, P. and Grohens, R. (1999). Discrete filters for large eddy simulation.Int. J. Numer. Meth. Fluids,31, 1195–1220.

    Article  MATH  Google Scholar 

  140. Sangalli, G. (2003). Capturing small scales in elliptic problems using a residual-free bubbles finite element method.Multiscale Modeling and Simulation,1, 485–503.

    Article  MATH  MathSciNet  Google Scholar 

  141. Sarghini, F., Piomelli, U. and Balaras, E. (1999). Scale-similar models for large-eddy simulation.Phys. Fluids,11, 1596–1607.

    Article  MATH  Google Scholar 

  142. Schumann, U. (1975). Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli.J. Comput. Phys.,18, 376–404.

    Article  MATH  MathSciNet  Google Scholar 

  143. Shephard, M., Dey, S. and Flaherty, J.E. (1997). A straightforward structure to construct shape functions for variable p-order meshes.Comput. Methods Appl. Mech. Engrg.,147, 209–233.

    Article  MATH  Google Scholar 

  144. Smagorinsky, J. (1963). General circulation experiments with the primitive equations. I. The basic experiment.Mon. Weather Rev.,91, 99–164.

    Article  Google Scholar 

  145. Szabo, B. and Babuška, I. (1991)Finite element analysis. John Wiley & Sons, New York.

    MATH  Google Scholar 

  146. Taylor, G.I. (1923). On the decay of vortices in a viscous fluid.Philos. Mag.,46, 671–674.

    Google Scholar 

  147. Tejada-Martinez, A.E. and Jansen, K.E. (2003). Spatial test filters for dynamic model large eddy simulation with finite elements.Comm. Numer. Meth. Engrg.,19, 205–213.

    Article  MATH  Google Scholar 

  148. Tejada-Martinez, A.E. and Jansen, K.E. (2004). A dynamic Smagorinsky model with dynamic determination of the filter width ratio.Phys. Fluids,16, 2514–2528.

    Article  Google Scholar 

  149. Tennekes, H. and Lumley, J.L. (1972).A first course in turbulence. MIT Press, Cambridge, MA.

    Google Scholar 

  150. Terracol, M., Sagaut, P. and Basdevant, C. (2001). A multilevel algorithm for large-eddy simulation of turbulent compressible flows.J. Comput. Phys.,167, 439–474.

    Article  MATH  Google Scholar 

  151. Tezduyar, T.E. and Osawa, Y. (2000). Finite element stabilization parameters computed from element matrices and vectors.Comput. Methods Appl. Mech. Engrg.,190, 411–430.

    Article  MATH  Google Scholar 

  152. Vasilyev, O., Lund, T.S. and Moin, P. (1998). A general class of commutative filters for LES in complex geometries.J. Comput. Phys.,146, 82–104.

    Article  MATH  MathSciNet  Google Scholar 

  153. Vreman, A.W. (2003). The filtering analog of the variational multiscale method in large-eddy simulation.Phys. Fluids,15, L61-L64.

    Article  MathSciNet  Google Scholar 

  154. Vreman, A.W. (2004). The adjoint filter operator in large-eddy simulation of turbulent flow.Phys. Fluids,16, 2012–2022.

    Article  Google Scholar 

  155. Wagner, G.J. and Liu, W.K. (2000). Turbulence simulation and multiple scale subgrid models.Comput. Mech.,25, 117–136.

    Article  MATH  Google Scholar 

  156. Wall, W.A. (1999). Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen. (in German), PhD Thesis, Report No. 31, Institute of Structural Mechanics, University of Stuttgart.

  157. Wesseling, P. (1992).An introduction to multigrid methods. John Wiley & Sons, Chichester.

    MATH  Google Scholar 

  158. Whiting, C.H. (1999). Stabilized finite element methods for fluid dynamics using a hierarchical basis. PhD Thesis, Rensselaer Polytechnic Institute.

  159. Whiting, C.H. and Jansen, K.E. (2001). A stabilized finite element method for the incompressible Navior-Stokes equations using a hierarchical basis.Int. J. Numer. Meth. Fluids,35, 93–116.

    Article  MATH  Google Scholar 

  160. Whiting, C.H., Jansen, K.E. and Dey, S. (2003). Hierarchical basis for stabilized finite element methods for compressible flows.Comput. Methods Appl. Mech. Engrg.,192, 5167–5185.

    Article  MATH  Google Scholar 

  161. Wilcox, D.C. (1998).Turbulence Modeling for CFD. 2nd edition, DCW Industries Inc., La Canada, CA.

    Google Scholar 

  162. Wu, X., Schlüter, J., Moin, P., Pitsch, H., Iaccarino, G. and Ham, F. (2006). Computational study on the internal layer in a diffuser.J. Fluid Mech.,550, 391–412.

    Article  MATH  Google Scholar 

  163. Zang, Y., Street, R.L. and Koseff, J.R. (1993). A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows.Phys. Fluids A,5, 3186–3196.

    Article  Google Scholar 

  164. Zienkiewicz, O.C., de S.R. Gago, J.P. Gago and Kelly, D.W. (1983). The hierarchical concept in finite element analysis.Comput. Struct.,16, 53–65.

    Article  MATH  Google Scholar 

  165. Zienkiewicz, O.C. and Taylor, R.L. (2000).The finite element method, Vol. 1: The basis. 5th edition, Butterworth-Heinemann, Oxford.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gravemeier, V. The variational multiscale method for laminar and turbulent flow. ARCO 13, 249–324 (2006). https://doi.org/10.1007/BF02980231

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02980231

Keywords

Navigation