Skip to main content
Log in

A palette of fine-scale eddy viscosity and residual-based models for variational multiscale formulations of turbulence

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We explore a general family of eddy viscosity models for the large-eddy simulation of turbulence within the framework of the Variational Multiscale Method. Our investigation encompasses various fine-scale eddy viscosities and coarse-scale residual-based constructs. We delineate the domain of parameter space in which physically and mathematically suitable models exist, and identify several sub-families of potentially useful models that are either entirely new or extend previously proposed ones. We also combine classical modeling ideas, that lead to turbulent kinetic energy evolution equations, with the residual-based approach to derive a new residual-driven, one-equation dynamic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This is still a debatable point. There is some evidence that the fine scales are being sacrificed to benefit the coarse scales, and other evidence that the fine-scale contribution improves both the coarse and fine scales.

  2. Interestingly, the residual based VMS method, which is consistent for all resolved scales, also displays this superior performance for well-resolved LES [12, 13, 28].

References

  1. Hughes TJR, Feijóo GR, Mazzei L, Quincy J-B (1998) The variational multiscale method-a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166(1–2):3–24

    Article  MathSciNet  MATH  Google Scholar 

  2. Hughes TJR, Sangalli G (2008) Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J Numer Anal 45(2):539–557

    Article  MathSciNet  MATH  Google Scholar 

  3. Hughes TJR, Scovazzi G, Franca LP (2004) Multiscale and stabilized methods. Wiley Online Library, Hoboken

    Book  Google Scholar 

  4. Guermond J-L (2001) Subgrid stabilization of galerkin approximations of linear monotone operators. IMA J Numer Anal 21(1):165–197

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezzi F, Houston P, Marini D, Süli E (2000) Modeling subgrid viscosity for advection-diffusion problems. Comput Methods Appl Mech Eng 190(13):1601–1610

    Article  MATH  Google Scholar 

  6. Hughes TJR, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Vis Sci 3:47–59

    Article  MATH  Google Scholar 

  7. Hughes TJR, Mazzei L, Oberai AA, Wray AA (2001) The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence. Phys Fluids 13(2):505–512

    Article  MATH  Google Scholar 

  8. Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13(6):1784–1799

    Article  MATH  Google Scholar 

  9. Smagorinsky J (1963) General circulation experiments with the primitive equations. I. The basic experiment. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  10. Braack M, Lube G (2009) Finite elements with local projection stabilization for incompressible flow problems. J Comput Math 27(2–3):116–147

    MathSciNet  MATH  Google Scholar 

  11. Hughes TJR, Wells GN, Wray AA (2004) Energy transfers and spectral eddy viscosity in large-eddy simulations of homogeneous isotropic turbulence: Comparison of dynamic Smagorinsky and multiscale models over a range of discretizations. Phys Fluids 16(11):4044

    Article  MathSciNet  MATH  Google Scholar 

  12. Chang K, Hughes TJR, Calo VM (2012) Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall. Comput Fluids 68:94–104

    Article  MathSciNet  Google Scholar 

  13. Motlagh YG, Ahn HT, Hughes TJR, Calo VM (2013) Simulation of laminar and turbulent concentric pipe flows with the isogeometric variational multiscale method. Comput Fluids 71:146–155

    Article  MathSciNet  Google Scholar 

  14. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43(5):555–575

    Article  MathSciNet  MATH  Google Scholar 

  15. Wanderer J, Oberai AA (2008) A two-parameter variational multiscale method for large eddy simulation. Phys Fluids 20:085107

    Article  MATH  Google Scholar 

  16. Koobus B, Farhat C (2004) A variational multiscale method for the large eddy simulation of compressible turbulent flows on unstructured meshes-application to vortex shedding. Comput Methods Appl Mech Eng 193(15–16):1367–1383

    Article  MathSciNet  MATH  Google Scholar 

  17. Gravemeier V, Gee MW, Kronbichler M, Wall WA (2010) An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow. Comput Methods Appl Mech Eng 199(13):853–864

    Article  MathSciNet  MATH  Google Scholar 

  18. Colosqui CE, Oberai AA (2008) Generalized smagorinsky model in physical space. Comput Fluids 37(3):201–217

  19. Kraichnan RH (1976) Eddy viscosity in two and three dimensions. J Atmos Sci 33:1521–1536

    Article  Google Scholar 

  20. Oberai AA, Gravemeier V, Burton G (2014) Transfer of energy in the variational multiscale formulation of LES. Technical report, CTR Annual Research Briefs, Center for Turbulence Research, Stanford University/NASA Ames Research Center, Stanford, CA 94305

  21. Lilly DK (1966) On the application of the eddy viscosity concept in the inertial subrange of turbulence. Technical report, NCAR manuscript 123, Boulder

  22. Van Driest ER (1956) On turbulent flow near a wall. J Aerosp Sci 23:1007–1011

    MATH  Google Scholar 

  23. Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids 3(7):1760–1765

    Article  MATH  Google Scholar 

  24. Ghosal S, Lund TS, Moin P, Akselvoll K (1995) A dynamic localization model for large-eddy simulation of turbulent flows. J Fluid Mech 286:229–255

    Article  MathSciNet  MATH  Google Scholar 

  25. Oberai AA, Wanderer J (2005) Variational formulation of the Germano identity for the Navier-Stokes equations. J Turbul 6(7):1–17

    MathSciNet  MATH  Google Scholar 

  26. Hughes TJR, Calo VM, Scovazzi G (2005) Variational and multiscale methods in turbulence. In: Mechanics of the 21st Century, pages 153–163. Springer

  27. Oberai AA, Liu J, Sondak D, Hughes TJR (2014) A residual based eddy viscosity model for the large eddy simulation of turbulent flows. Comput Methods Appl Mech Eng 282:54–70

    Article  MathSciNet  Google Scholar 

  28. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197(1–4):173–201

    Article  MathSciNet  MATH  Google Scholar 

  29. Hughes TJR (1995) Multiscale phenomena: Green’s functions, The Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401

    Article  MATH  Google Scholar 

  30. Codina R, Principe J (2007) Dynamic subscales in the finite element approximation of thermally coupled incompressible flows. Int J Numer Meth Fluids 54(6–8):707

    Article  MathSciNet  MATH  Google Scholar 

  31. Codina R, Principe J, Ávila M (2010) Finite element approximation of turbulent thermally coupled incompressible flows with numerical sub-grid scale modelling. Int J Numer Methods Heat Fluid Flow 20(5):492–516

    Article  MathSciNet  MATH  Google Scholar 

  32. Spalart PR, Allmaras SR (1992) A one-equation turbulence model for aerodynamic flows. In: AIAA, Aerospace Sciences Meeting and Exhibit, 30 th, Reno, NV, page 1992

  33. Jones WP, Launder BE (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Transf 15(2):301–314

    Article  Google Scholar 

  34. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  35. Prandtl L Über ein neues formelsystem für die ausgebildete turbulenz, nachr. d. akad. d. wiss. Göttingen, Math.-nat. Klasse, pages 6–20, 1945

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assad A. Oberai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oberai, A.A., Hughes, T.J.R. A palette of fine-scale eddy viscosity and residual-based models for variational multiscale formulations of turbulence. Comput Mech 57, 629–635 (2016). https://doi.org/10.1007/s00466-015-1242-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1242-2

Keywords

Navigation