Skip to main content
Log in

Mechanism of apoptosis induced by diazoxide, a K+ channel opener, in HepG2 Human hepatoma cells

  • Research Articles
  • Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The effect of diazoxide, a K+ channel opener, on apoptotic cell death was investigated in HepG2 human hepatoblastoma cells. Diazoxide induced apoptosis in a dose-dependent manner and this was evaluated by flow cytometric assays of annexin-V binding and hypodiploid nuclei stained with propidium iodide. Diazoxide did not alter intracellular K+ concentration, and various inhibitors of K+ channels had no influence on the diazoxide-induced apoptosis; this implies that K+ channels activated by diazoxide may be absent in the HepG2 cells. However, diazoxide induced a rapid and sustained increase in intracellular Ca2+ concentration, and this was completely inhibited by the extracellular Ca2+ chelation with EGTA, but not by blockers of intracellular Ca2+ release (dantrolene and TMB-8). This result indicated that the diazoxideinduced increase of intracellular Ca2+ might be due to the activation of a Ca2+ influx pathway. Diazoxide-induced Ca2+ influx was not significantly inhibited by either voltage-operative Ca2+ channel blockers (nifedipine or verapamil), or by inhibitors of Na+, Ca2+-exchanger (bepridil and benzamil), but it was inhibited by flufenamic acid (FA), a Ca2+-permeable nonselective cation channel blocker. A quantitative analysis of apoptosis by flow cytometry revealed that a treatment with either FA or BAPTA, an intracellular Ca2+ chelator, significantly inhibited the diazoxide-induced apoptosis. Taken together, these results suggest that the observed diazoxideinduced apoptosis in the HepG2 cells may result from a Ca2+ influx through the activation of Ca2+-permeable non-selective cation channels. These results are very significant, and they lead us to further suggest that diazoxide may be valuable for the therapeutic intervention of human hepatomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J. M., and Cory, S., The Bcl-2 protein family: arbiters of cell survival.Science, 281, 1322–1326 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Aguilar-Bryan, L., Clement, J. P. 4th, Gonzalez, G., Kunjilwar, K., Babenko, A., and Bryan, J., Toward understanding the assembly and structure of KATP channels.Physiol. Rev., 78, 227–245 (1998).

    PubMed  CAS  Google Scholar 

  • Avdonin, V., Kasuya, J., Ciorba, M. A., Kaplan, B., Hoshi, T., and Iverson, L., Apoptotic proteins Reaper and Grim induce stable inactivation in voltage-gated K+ channels.Proc. Natl. Acad. Sci. U. S. A, 95, 11703–11708 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Barbiero, G., Duranti, F., Bonelli, G., Amenta, J. S., and Baccino, F. M., Intracellular ionic variations in the apoptotic death of L cells by inhibitors of cell cycle progression.Exp. Cell Res., 217, 410–418 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Bombeli, T., Karsan, A., Tait, J. F., and Harlan, J. M., Apoptotic vascular endothelial cells become procoagulant.Blood, 89, 2429–2442 (1997).

    PubMed  CAS  Google Scholar 

  • Bonnefoy-Berard, N., Genestier, L., Flacher, M., and Revillard, J. P., The phosphoprotein phosphatase calcineurin controls calcium-dependent apoptosis in B cell lines.Eur. J. Immunol., 24, 325–329 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Bortner, C. D., Hughes, F. M., Jr, and Cidlowski, J. A., A primary role for K+ and Na+ efflux in the activation of apoptosis.J. Biol. Chem., 272, 32436–32442 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Cameron, J. S., Lhuillier, L., Subramony, P., and Dryer, S. E., Developmental regulation of neuronal K+ channels by target-derived TGFin vivo andin vitro.Neuron, 21, 1045–1053 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Challinor-Rogers, J. L., and McPherson, G. A., Potassium channel openers and other regulators of KATP channels.Clin. Exp. Pharmacol. Physiol., 21, 583–597 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Chen, W. H., Yeh, T. H., Tsai, M. C., Chen, D. S., and Wang, T. H., Characterization of Ca2+-andvoltage-dependent nonselective cation channels inhumanHepG2 cells.J. Formos. Med. Assoc., 96, 503–510 (1997).

    PubMed  CAS  Google Scholar 

  • Chin, L. S., Park, C. C., Zitnay, K. M., Sinha, M., DiPatri, A. J. Jr., Perillan, P., and Simard, J.M., 4-Aminopyridine causes apoptosis and blocks an outward rectifier K+ channel in malignant astrocytoma cell lines.J. Neurosci. Res., 48, 122–127 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J. J., and Duke, R. C., Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death.J. Immunol., 132, 38–42 (1984).

    PubMed  CAS  Google Scholar 

  • Crompton, N. E., Programmed cellular response in radiation oncology.Acta Oncol., 37 Suppl 11, 1–4 (1998).

    Article  PubMed  Google Scholar 

  • Deutsch, C., Potassium channels:basic functionand therapeutic aspects.Prog. Clin. Biol. Res., 334, 251–271 (1990).

    PubMed  CAS  Google Scholar 

  • Distelhorst, C.W., and Dubyak, G., Roleof calciumin glucocorticosteroid-induced apoptosisof thymocytesand lymphoma cells: resurrection of old theories by new findings.Blood, 91, 731–734 (1998).

    PubMed  CAS  Google Scholar 

  • Duchen, M. R., Roles of mitochondria in health and disease.Diabetes, 53, S96–102 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Edwards, G., and Weston, A.H., The role of potassium channels in excitable cells.Diabetes Res. Clin. Pract., 8 Suppl, S57–66 (1995).

    Article  Google Scholar 

  • Fasolato, C., Hoth, M., Matthews, G., and Penner, R., Ca2+ and Mn2+influxthrough receptor-mediatedactivationof nonspecific cation channels in mast cells.Proc. Natl. Acad. Sci. USA, 90, 3068–3072 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Fesus, L., Thomazy, V., and Falus, A., Induction and activation of tissue transglutaminase during programmed cell death.FEBS Lett., 224, 104–108 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Gogelein, H., Dahlem, D., Englert, H. C., and Lang, H. J., Flufenamic acid, mefenamic acid and niflumic acid inhibit singlenonselective cation channelsin therat exocrine pancreas.FEBS Lett., 268, 79–82 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Grynkiewicz, G., Poene, M., and Tsien, R. Y., A new generation of Ca2+ indicators withgreatly improved fluorescence properties.J. Biol. Chem., 260, 3440–3450 (1985).

    PubMed  CAS  Google Scholar 

  • Harman, A. W., and Maxwell, M. J., An evaluation of the role of calcium in cell injury.Annu. Rev. Pharmacol. Toxicol., 35, 129–144 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., Ionic Channels of Excitable Membranes, 2nd Ed., Sinauer Associates, Inc., Sunderland, MA, pp. 115–139 and 472–503 (1992).

    Google Scholar 

  • Hughes, F. M., Jr, Bortner, C. D., Purdy, G. D., and Cidlowski, J. A., Intracellular K+suppresses the activation of apoptosis in lymphocytes.J. Biol. Chem., 272, 30567–30576 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Jordan, J., Galindo, M. F., and Miller, R. J., Role of calpain and interleukin-1 beta converting enzyme-like proteases in the beta-amyloid-induced death of rat hippocampal neurons in culture.J. Neurochem., 68, 1612–1621 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kamesaki, H., Mechanisms involved in chemotherapy-induced apoptosis and theirimplications in cancer chemotherapy.Int. J. Hematol., 68, 29–43 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Kamleiter, M., Hanemann, C. O., Kluwe, L., Rosenbaum, C., Wosch, S., Mautner, V. F., Muller, H. W., and Grafe, P., Voltage-dependent membrane currents of cultured human neurofibromatosis type 2 Schwann cells.Glia, 24, 313–322 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Kastan, M. B., Canman, C. E., and Leonard, C. J., P53, cell cycle control and apoptosis: implications for cancer.Cancer Metastasis Rev., 14, 3–15 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Kidd, V. J., Proteolytic activities that mediate apoptosis.Annu. Rev. Physiol., 60, 533–573 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. A., Kang, Y. S., Lee, S. H., Lee, E. H., and Lee, Y. S., Involvement of Ca2+ influx in the mechanism of tamoxifen-induced apoptosis in HepG2 human hepatoblastoma cells.Cancer Lett., 147, 115–123 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. A., Kang, Y. S., Lee, S. H., and Lee, Y. S., Inhibitors of Na+/Ca2+ exchanger prevent oxidant-induced intracellular Ca2+ increase andapoptosis in a human hepatoma cell line.Free Radic. Res., 33, 267–277 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Kornblau, S. M., The role of apoptosis in the pathogenesis, prognosis, and therapy of hematologic malignancies.Leukemia, 12 Suppl 1, S41–46 (1998).

    PubMed  CAS  Google Scholar 

  • Lepple-Wienhues, A., Berweck, S., Bohmig, M., Leo, C. P., Meyling, B., Garbe, C., and Wiederholt, M., K+ channels and the intracellular calcium signal in human melanoma cell proliferation.J. Membr. Biol., 151, 149–157 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Liu, S. I., Chi, C. W., Lui, W. Y., Mok, K. T., Wu, C. W., and Wu, S. N., Correlation of hepatocyte growth factor-induced proliferation and calcium-activated potassium current in human gastric cancer cells.Biochim. Biophys. Acta, 1368, 256–266 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Malhi, H., Irani, A. N., Rajvanshi, P., Suadicani, S. O., Spray, D. C., McDonald, T. V., andGupta, S., KATP channels regulate mitogenically-induced proliferationin primary hepatocytes and human liver cell lines: implications for liver growth control and potential therapeutic targeting.J. Biol. Chem., 275, 26050–26057 (2000).

    Article  PubMed  CAS  Google Scholar 

  • McConkey, D. J. and Orrenius, S., The role of calcium in the regulation of apoptosis.J. Leukoc. Biol., 59, 775–783 (1996).

    PubMed  CAS  Google Scholar 

  • Melino, G., Annicchiarico-Petruzzeli, M., Piredda, L., Candi, E., Gentile, V., Davies, P. J., and Piacentini, M., Tissue transglutaminase and apoptosis: Sense and antisense transfection studies with human neuroblastoma cells.Mol. Cell Biol., 14, 6584–6596 (1994).

    PubMed  CAS  Google Scholar 

  • Minta, A. and Tsien, R. Y., Fluorescent indicators for cytosolic sodium.J. Biol. Chem., 264, 19449–19457 (1989).

    PubMed  CAS  Google Scholar 

  • Nilius, B. and Wohlrab, W., Potassium channels and regulation of proliferation of human melanoma cells.J. Physiol (Lord)., 445, 537–548 (1992).

    CAS  Google Scholar 

  • Rouzaire-Dubois, B. and Dubois, J. M., K+ channel block-induced mammalian neuroblastoma cell swelling: a possible mechanism to influence proliferation.J. Physiol (Lond)., 510, 93–102 (1998).

    Article  CAS  Google Scholar 

  • Rouzaire-Dubois, B. and Dubois, J. M., A quantitative analysis of the role of K+ channels in mitogenesis of neuroblastoma cells.Cell Signal., 3, 333–339 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Schulte-Hermann, R., Bursch, W., Low-Baselli, A., Wagner, A., and Grasl-Kraupp, B., Apoptosis in the liver and its role in hepatocarcinogenesis.Cell Biol. Toxicol., 13, 339–348 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki, F., Kondo, E., Akagi, E., and McKeon, F., Suppresion of signaling through NF-AT by interactions between calcineurin and BCL-2.Nature, 386, 728–731 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Shirihai, O., Attali, B., Dagan, D., and Merchav, S., Expression of two inward rectifier potassium channels is essential for differentiation of primitive human hematopoietic progenitor cells.J. Cell Physiol., 177, 197–205 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Squier, M. K. T. and Cohen, J. J., Calpain, an upstream regulator of thymocyte apoptosis.J. Immunol., 158, 3690–3697 (1997).

    PubMed  CAS  Google Scholar 

  • Squier, M. K. T., Miller, A. C. K., Malkinson, A. M., and Cohen, J. J., Calpain activationin apoptosis.J. Cell Physiol., 159, 229–237 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Stanley, R. G., Advances in second messenger and phosphoprotein research. Academic Press, Orlando, FL 33, 107–127 (1999).

    Google Scholar 

  • Teshima, Y., Akao, M., Li, R. A., Chong, T. H., Baumgartner, W. A., Johnston, M. V., and Marban, E., Mitochondrial ATP- sensitive potassium channel activation protectacerebellar granule neurons from apoptosis induced by oxidative stress.Stroke, 34, 1796–1802 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Vermes, I., Haanen, C., Steffens-Nakken, H., and Reutelingsperger, C., A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V.J. Immunol. Methods, 184, 39–51 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Wang, S., Melkoumian, Z., Woodfork, K. A., Cather, C., Davidson, A. G., Wonderlin, W.F., and Strobl, J. S., Evidence for an early G1 ionic event necessary for cell cycle progression and survival in the MCF-7 human breast carcinoma cell line.J. Cell Physiol., 176, 456–464 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Wondergem, R., Cregan, M., Strickler, L., Miller, R., and Suttles, J., Membrane potassium channels and human bladder tumor cells: II. Growth properties.J. Membr. Biol., 161, 257–262 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Woodfork, K. A., Wonderlin, W. F., Peterson, V. A., and Strobl, J., Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture.J. Cell Physiol., 162, 163–171 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Wyllie, A. H., Morris, R. G., Smith, A. L., and Dunlop, D., Chromatin cleavage inapoptosis: Association with condensed chromatin morphology and dependence ormacromolecular synthesis.J. Pathol., 142, 67–67 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Xu, B., Wilson, B. A., and Lu, L., Induction of human myeloblasts ML-1 cell G1 arrest by suppression of K+ channel activity.Am. J. Physiol., 271, C2037–2044 (1996).

    PubMed  CAS  Google Scholar 

  • Yu, S. P., Farhangrazi, Z. S., Ying, H. S., Yeh, C. H., and Choi D. W., Enhancement of outward potassium current may participate in β-amyloidpeptide-induced cortical neuronal death.Neurobiol. Dis., 5, 81–88 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Inazu, M., Weir, B., Buchanan, M., and Daniel, E., Cyclopiazonic acid stimulates Ca2+ influxthrough non-specific cation channels in endothelial cells.Eur. J. Pharmacol., 251, 119–125 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y.S. Mechanism of apoptosis induced by diazoxide, a K+ channel opener, in HepG2 Human hepatoma cells. Arch Pharm Res 27, 305–313 (2004). https://doi.org/10.1007/BF02980065

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02980065

Key words

Navigation