Skip to main content
Log in

Apoptosis and cancer

Apoptosis y cáncer

  • Revisiones
  • Published:
Revista de Oncología Aims and scope Submit manuscript

Abstract

Apoptosis, or programmed cell death, is a central mechanism controlling cell number and the deletion of unwanted cells. Recent efforts have lead to the identification of the machinery involved in the control and execution of the apoptotic program Alteration of the normal apoptotic program has been identified as the possible cause of a number of human diseases, including neoplasia. In this review the means by which disruption of the normal apoptotic machinery may lead or contribute to tumor generation and progression will be discussed.

Resumen

La apoptosis o muerte celular programada es un mecanismo central que controla el nÚmero de células y la eliminatión de las células no deseadas. Algunos trabajos recientes han conducido a la identificatión de los mecanismos que intervienen en el control y la ejecución del programa apoptósico. Se ha identificado la alteración del programa apoptótico normal como posible causa de diversas enfermedades humanas, incluyendo las neoplasias. En esta revisión, se comentará la forma en que la alteración del dispositivo apoptósico normal puede dar lugar o contribuir a producir la generación y progresión de los tumores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell 1997; 88: 347–354.

    Article  CAS  PubMed  Google Scholar 

  3. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998; 281: 1305–1308.

    Article  CAS  PubMed  Google Scholar 

  4. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998; 94: 481–490.

    Article  CAS  PubMed  Google Scholar 

  5. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998; 94: 491–501.

    Article  CAS  PubMed  Google Scholar 

  6. Thornberry NA, Lazebnik Y. Capases: enemies within. Science 1998; 281: 1312–1316.

    Article  CAS  PubMed  Google Scholar 

  7. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281: 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  8. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998; 281: 1322–1326.

    Article  CAS  PubMed  Google Scholar 

  9. Del Peso L, NÚñez G. Linking extracellular survival signals and the apoptotic machinery. Curr Opin Neurobiol 1998; 8: 613–618.

    Article  PubMed  Google Scholar 

  10. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–1462.

    Article  CAS  PubMed  Google Scholar 

  11. Hetts SW. To die or not to die. An overview of apoptosis and its role in disease. JAMA 1998; 279: 300–307.

    Article  CAS  PubMed  Google Scholar 

  12. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14; 18) chromosome translocation. Science 1984; 226: 1097–1099.

    Article  CAS  PubMed  Google Scholar 

  13. Bakhshi A, Jensen JP, Goldman P et al. Cloning of the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 1985; 41: 899–906.

    Article  CAS  PubMed  Google Scholar 

  14. Cleary ML, Smith SD, Sklar J. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 1986; 47: 19–28.

    Article  CAS  PubMed  Google Scholar 

  15. Reed JC, Cuddy M, Slabiak T, Croce CM, Nowell PC. Oncogenic potential of bcl-2 demonstrated by gene transfer. Nature 1988; 336: 259–261.

    Article  CAS  PubMed  Google Scholar 

  16. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988; 335: 440–442.

    Article  CAS  PubMed  Google Scholar 

  17. McDonnell TJ, Deanne N, Platt FM et al. Bcl-2 immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 1989; 57: 79–88.

    Article  CAS  PubMed  Google Scholar 

  18. Yang E, Korsmeyer SJ. Molecular thanatopsis: a discourse on the BCL-2 family and cell death. Blood 1996; 88: 386–401.

    CAS  PubMed  Google Scholar 

  19. El-Deiry WS, Tokino T, Velculescu VE et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–825.

    Article  CAS  PubMed  Google Scholar 

  20. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80: 293–299.

    Article  CAS  PubMed  Google Scholar 

  21. Yin C, Knudson CM, Korsmeyer SJ, Van Dyke T. Bax suppresses tumorigenesis and stimulates apoptosisin vivo. Nature 1997; 385: 637–640.

    Article  CAS  PubMed  Google Scholar 

  22. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature 1997; 389: 300–305.

    Article  CAS  PubMed  Google Scholar 

  23. Wu GS, Burns TF, McDonald ER 3rd et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 1997; 17: 141–143.

    Article  CAS  PubMed  Google Scholar 

  24. Miyashita T, Krajewski S, Krajewska M et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expressionin vitro andin vivo. Oncogene 1994; 9: 1799–1805.

    CAS  PubMed  Google Scholar 

  25. Miyashita T, Harigai M, Hanada M, Reed JC. Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res. 1994; 54: 3131–3135.

    CAS  PubMed  Google Scholar 

  26. Evan G, Littlewood T. A matter of life and cell death. Science 1998; 281: 1317–1322.

    Article  CAS  PubMed  Google Scholar 

  27. Symonds H, Krall L, Remington L et al. p53-dependent apoptosis suppresses tumor growth and progressionin vivo. Cell 1994; 78: 703–711.

    Article  CAS  PubMed  Google Scholar 

  28. Stambolic V, Suzuki A, De la Pompa JL et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998; 95: 29–39.

    Article  CAS  PubMed  Google Scholar 

  29. Mehlen P, Rabizadeh S, Snipas SJ, Assa-Munt N, Salvesen GS, Bredesen DE. The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis. Nature 1998; 395: 801–804.

    Article  CAS  PubMed  Google Scholar 

  30. Quignon F, De Bels F, Koken M, Feunteun J, Ameisen JC, De The H. PML induces a novel caspase-independent death process. Nat Genet 1998; 20: 259–265.

    Article  CAS  PubMed  Google Scholar 

  31. Wang ZG, Ruggero D, Ronchetti S et al. PML is essential for multiple apoptotic pathways. Nat Genet 1998; 20: 266–272.

    Article  CAS  PubMed  Google Scholar 

  32. Morin PJ, Vogelstein B, Kinzler KW. Apoptosis and APC in colorectal tumorigenesis. Proc Natl Acad Sci USA 1996; 93: 7950–7954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Helbing CC, Veillette C, Riabowol K, Johnston RN, Garkavtsev I. A novel candidate tumor suppressor, ING1, is involved in the regulation of apoptosis. Cancer Res 1997; 57: 1255–1258.

    CAS  PubMed  Google Scholar 

  34. Shao N, Chai YL, Shyam E, Reddy P, Rao VN. Induction of apoptosis by the tumor suppressor protein BRCA1. Oncogene 1996; 13: 1–7.

    CAS  PubMed  Google Scholar 

  35. Harkin DP, Bean JM, Miklos D et al. Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 1999; 97: 575–586.

    Article  CAS  PubMed  Google Scholar 

  36. Ji L, Fang B, Yen N, Fong K, Minna JD, Roth JA. Induction of apoptosis and inhibition of tumorigenicity and tumor growth by adenovirus vector-mediated fragile histidine triad (FHIT) gene overexpression. Cancer Res 1999; 59: 3333–3339.

    CAS  PubMed  Google Scholar 

  37. Sard L, Accornero P, Tornielli S et al. The tumor-suppressor gene FHIT is involved in the regulation of apoptosis and in cell cycle control. Proc Natl Acad Sci USA 1999; 96: 8489–8492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tanaka N, Ishihara M, Kitagawa M et al. Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell 1994; 77: 829–839.

    Article  CAS  PubMed  Google Scholar 

  39. Maheswaran S, Englert C, Bennett P, Heinrich G, Haber DA. The WT1 gene product stabilizes p53 and inhibits p53-mediated apoptosis. Genes Dev 1995; 9: 2143–2156.

    Article  CAS  PubMed  Google Scholar 

  40. Li J, Yen C, Liaw D et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275: 1943–1947.

    Article  CAS  PubMed  Google Scholar 

  41. Steck PA, Pershouse MA, Jasser SA et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997; 15: 356–362.

    Article  CAS  PubMed  Google Scholar 

  42. Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 1999; 96: 4240–4245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998; 273: 13375–13378.

    Article  CAS  PubMed  Google Scholar 

  44. Datta SR, Dudek H, Tao X et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231–241.

    Article  CAS  PubMed  Google Scholar 

  45. Del Peso L, Gonzalez-García M, Page C, Herrera R, NÚñez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997; 278: 687–689.

    Article  PubMed  Google Scholar 

  46. Cardone MH, Roy N, Stennicke HR et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282: 1318–1321.

    Article  CAS  PubMed  Google Scholar 

  47. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96: 857–868.

    Article  CAS  PubMed  Google Scholar 

  48. Tang ED, NÚñez G, Barr FG, Guan KL. Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 1999; 274: 16741–16746.

    Article  CAS  PubMed  Google Scholar 

  49. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 1999; 401: 82–85.

    Article  CAS  PubMed  Google Scholar 

  50. Romashkova JA, Makarov SS. NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 1999; 401: 86–90.

    Article  CAS  PubMed  Google Scholar 

  51. Bellacosa A, Testa JR, Staal SP, Tsichlis PN. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 1991; 254: 274–277.

    Article  CAS  PubMed  Google Scholar 

  52. Chang HW, Aoki M, Fruman D et al. Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase. Science 1997; 276: 1848–1850.

    Article  CAS  PubMed  Google Scholar 

  53. Staal SP. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA 1987; 84: 5034–5037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cheng JQ, Ruggeri B, Klein WM et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci USA 1996; 93: 3636–3641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cheng JQ, Godwin AK, Bellacosa A et al. AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci USA 1992; 89: 9267–9271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shayesteh L, Lu Y, Kuo WL et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 1999; 21: 99–102.

    Article  CAS  PubMed  Google Scholar 

  57. Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP. Impaired Fas response and autoimmunity in Pten+/ℳice. Science 1999; 285: 2122–2125.

    Article  PubMed  Google Scholar 

  58. Rampino N, Yamamoto H, Ionov Y et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 1997; 275: 967–969.

    Article  CAS  PubMed  Google Scholar 

  59. Traver D, Akashi K, Weissman IL, Lagasse E. Mice defective in two apoptosis pathways in the myeloid lineage develop acute myeloblastic leukemia. Immunity 1998; 9: 47–57.

    Article  CAS  PubMed  Google Scholar 

  60. Hill LL, Ouhtit A, Loughlin SM, Kripke ML, Ananthaswamy HN, Owen-Schaub LB. Fas ligand: a sensor for DNA damage critical in skin cancer etiology. Science 1999; 285: 898–900.

    Article  CAS  PubMed  Google Scholar 

  61. Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992; 69: 119–128.

    Article  CAS  PubMed  Google Scholar 

  62. Rao L, Debbas M, Sabbatini P, Hockenbery D, Korsmeyer S, White E. The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins. Proc Natl Acad Sci USA 1992; 89: 7742–7746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Qin XQ, Livingston DM, Kaelin WG Jr, Adams PD. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci USA 1994; 91: 10918–10922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jiménez B, Arends M, Esteve P et al. Induction of apoptosis in NIH3T3 cells after serum deprivation by overexpression of rho-p21, a GTPase protein of the ras superfamily. Oncogene 1995; 10: 811–816.

    PubMed  Google Scholar 

  65. Wang HG, Millan JA, Cox AD et al. R-Ras promotes apoptosis caused by growth factor deprivation via a Bcl-2 suppressible mechanism. J Cell Biol 1995; 129: 1103–1114.

    Article  CAS  PubMed  Google Scholar 

  66. Downward J. Ras signaling and apoptosis. Curr Opin Genet Dev 1998; 8: 49–54.

    Article  CAS  PubMed  Google Scholar 

  67. Fukasawa Y, Ishikura H, Takada A et al. Massive apoptosis in infantile myofibromatosis. A putative mechanism of tumor regression. Am J Pathol 1994; 144: 480–485.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Preston GA, Lang JE, Maronpot RR, Barrett JC. Regulation of apoptosis by low serum in cells of different stages of neoplastic progression: enhanced susceptibility after loss of a senescence gene and decreased susceptibility after loss of a tumor suppressor gene. Cancer Res 1994; 54: 4214–4223.

    CAS  PubMed  Google Scholar 

  69. Naik P, Karrim J, Hanahan D. The rise and fall of apoptosis during multistage tumorigenesis: down-modulation contributes to tumor progression from angiogenic progenitors. Genes Dev 1996; 10: 2105–2116.

    Article  CAS  PubMed  Google Scholar 

  70. Shibata MA, Maroulakou IG, Jorcyk CL, Gold LG, Ward JM, Green JE. p53-independent apoptosis during mammary tumor progression in C3(l)/SV40 large T antigen transgenic mice: suppression of apoptosis during the transition from preneoplasia to carcinoma. Cancer Res 1996; 56: 2998–3003.

    CAS  PubMed  Google Scholar 

  71. Soengas MS, Alarcon RM, Yoshida H et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 1999; 284: 156–159.

    Article  CAS  PubMed  Google Scholar 

  72. Graeber TG, Osmanian C, Jacks T et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 1996; 379: 88–91.

    Article  CAS  PubMed  Google Scholar 

  73. Schmaltz C, Hardenbergh PH, Wells A, Fisher DE. Regulation of proliferation-survival decisions during tumor cell hypoxia. Mol Cell Biol 1998; 18: 2845–2854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stempien-Otero A, Karsan A, Cornejo CJ et al. Mechanisms of hypoxia-induced endothelial cell death. Role of p53 in apoptosis. J Biol Chem 1999; 274: 8039–8045.

    Article  CAS  PubMed  Google Scholar 

  75. Carmeliet P, Dor Y, Herbert JM et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 1998; 394: 485–490.

    Article  CAS  PubMed  Google Scholar 

  76. Inbal B, Cohen O, Polak-Charcon S et al. DAP kinase links the control of apoptosis to metastasis. Nature 1997; 390: 180–184.

    Article  CAS  PubMed  Google Scholar 

  77. Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1995; 1: 149–153.

    Article  CAS  PubMed  Google Scholar 

  78. Hahne M, Rimoldi D, Schroter M, Romero P, Schreier M, French LE et al. Melanoma cell expression of Fas (Apo-1/CD95) ligand: implications for tumor immune escape. Science 1996; 274: 1363–1366.

    Article  CAS  PubMed  Google Scholar 

  79. O’Connell J, O’Sullivan GC, Collins JK, Shanahan F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med 1996; 184: 1075–1082.

    Article  PubMed  Google Scholar 

  80. Gimmi CD, Morrison BW, Mainprice BA et al. Breast cancer-associated antigen, DF3/MUC1, induces apoptosis of activated human T cells. Nat Med 1996; 2: 1367–1370.

    Article  CAS  PubMed  Google Scholar 

  81. Nakashima M, Sonoda K, Watanabe T. Inhibition of cell growth and induction of apoptotic cell death by the human tumor-associated antigen RCAS1. Nat Med 1999; 5: 938–942.

    Article  CAS  PubMed  Google Scholar 

  82. Hickman JA. Apoptosis induced by anticancer drugs. Cancer Metastasis Rev 1992; 11: 121–139.

    Article  CAS  PubMed  Google Scholar 

  83. Miyashita T, Reed JC. Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood 1993; 81: 151–157.

    CAS  PubMed  Google Scholar 

  84. Minn AJ, Rudin CM, Boise LH, Thompson CB. Expression of bcl-xL can confer a multidrug resistance phenotype. Blood 1995; 86: 1903–1910.

    CAS  PubMed  Google Scholar 

  85. Simonian PL, Grillot DA, Nunez G. Bcl-2 and Bcl-XL can differentially block chemotherapy-induced cell death. Blood 1997; 90: 1208–1216.

    CAS  PubMed  Google Scholar 

  86. Liu R, Page C, Beidler DR, Wicha MS, NÚñez G. Overexpression of Bcl-XL promotes chemotheraphy resistance of mammary tumors in a syngeneic mouse model. Am J Path

  87. Krajewski S, Blomqvist C, Franssila K et al. Reduced expression of proapoptotic gene BAX is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Res 1995; 55: 4471–4478.

    CAS  PubMed  Google Scholar 

  88. Tu Y, Renner S, Xu F et al. BCL-X expression in multiple myeloma: possible indicator of chemoresistance. Cancer Res 1998; 58: 256–262.

    CAS  PubMed  Google Scholar 

  89. Campos L, Rouault JP, Sabido O et al. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 1993; 81: 3091–3096.

    CAS  PubMed  Google Scholar 

  90. Hill ME, MacLennan KA, Cunningham DC et al. Prognostic significance of BCL-2 expression and bcl-2 major breakpoint region rearrangement in diffuse large cell non-Hodgkin’s lymphoma: a British National Lymphoma Investigation Study. Blood 1996; 88: 1046–1051.

    CAS  PubMed  Google Scholar 

  91. Hermine O, Haioun C, Lepage E et al. Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin’s lymphoma. Groupe d’Etude des Lymphomes de l’Adulte (GELA). Blood 1996; 87: 265–272.

    CAS  PubMed  Google Scholar 

  92. Wang CY, Cusack JC Jr, Liu R, Baldwin AS Jr. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med 1999; 5: 412–417.

    Article  PubMed  CAS  Google Scholar 

  93. Walczak H, Miller RE, Ariail K et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligandin vivo. Nat Med 1999; 5: 157–163.

    Article  CAS  PubMed  Google Scholar 

  94. Kayagaki N, Yamaguchi N, Nakayama M, Eto H, Okumura K, Yagita H. Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: A novel mechanism for the antitumor effects of type I IFNs. J Exp Med 1999; 189: 1451–1460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Irmler M, Thome M, Hahne M et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997; 388: 190–195.

    Article  CAS  PubMed  Google Scholar 

  96. Lamm GM, Christofori G. Impairment of survival factor function potentiates chemotherapy-induced apoptosis in tumor cells. Cancer Res 1998; 58: 801–807.

    CAS  PubMed  Google Scholar 

  97. D’Ambrosio C, Ferber A, Resnicoff M, Baserga R. A soluble insulin-like growth factor I receptor that induces apoptosis of tumor cellsin vivo and inhibits tumorigenesis. Cancer Res 1996; 56: 4013–4020.

    PubMed  Google Scholar 

  98. Bakker TR, Reed D, Renno T, Jongeneel CV. Efficient adenoviral transfer of NF-kappaB inhibitor sensitizes melanoma to tumor necrosis factor-mediated apoptosis. Int J Cancer 1999; 80: 320–323.

    Article  CAS  PubMed  Google Scholar 

  99. Bischoff JR, Kirn DH, Williams A et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    Article  CAS  PubMed  Google Scholar 

  100. Zhang J, Cado D, Chen A, Kabra NH, Winoto A. Fasmediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 1998; 392: 296–300.

    Article  CAS  PubMed  Google Scholar 

  101. Newton K, Harris AW, Bath ML, Smith KGC, Strasser A. A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO J 1998; 17: 706–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zornig M, Hueber AO, Evan G. p53-dependent impairment of T-cell proliferation in FADD dominant-negative transgenic mice. Curr Biol 1998; 8: 467–470.

    Article  CAS  PubMed  Google Scholar 

  103. Vairo G, Innes KM, Adams JM. Bcl-2 has a cell cycle inhibitory function separable from its enhancement of cell survival. Oncogene 1996; 13: 1511–1519.

    CAS  PubMed  Google Scholar 

  104. O’Reilly LA, Huang DC, Strasser A. The cell death inhibitor Bcl-2 and its homologues influence control of cell cycle entry. EMBO J 1996; 15: 6979–6990.

    PubMed  PubMed Central  Google Scholar 

  105. Green DR, McGahon A, Martin SJ. Regulation of apoptosis by oncogenes. J Cell Biochem 1996; 60: 33–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Peso, L. Apoptosis and cancer. Rev Oncología 2, 180–190 (2000). https://doi.org/10.1007/BF02979553

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02979553

Key words

Palabras clave

Navigation