Skip to main content
Log in

Ginsan improved Th1 immune response inhibited by gamma radiation

  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Gamma radiation causes suppression of the immune function, and immune properties are related to cytokine production. In the present study, the polysaccharide, Ginsan, purified from an ethanol-insoluble fraction of Ginseng (Panax ginseng C.A. Meyer, Araliaceae) water extract was studied to assess its effects on the immunosuppressive activities of gamma radiation. Ginsan was found to stimulate murine normal splenocytes by inducing the mRNA expressions of Th1 and Th2 type cytokines, and also restore the mRNA expression of IFN-γ, Th1 cytokine, after its inhibition by whole-body gamma irradiation. Therefore, Ginsan was found to restore the T lymphocytes function that had been suppressed by gamma irradiation in allogenic MLR (mixed lymphocyte reactions). However, Ginsan exhibited no excessive stimulatory effects on the control group. The above results indicated that Ginsan may constitute a new noble agent for the improvement of gamma radiation-induced immunosuppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballas, Z. K., Rasmussen, W., and Van Otegham, J. K., Lymphokine-activated killer (LAK). II. Delineation of distinct murine LAK-precursor subpopulation.J. Immunol., 138, 1647–1652 (1987).

    PubMed  CAS  Google Scholar 

  • Chen, Y. M, Ting, C. C., Peng, J. W., Yang, W. K., Yang, K. Y., Tsai, C. M., and Perng, R. P., Restoration of cytotoxic T lymphocyte function in malignant pleural effusion: interleukin-15 vs. interleukin-2.J. Interferon Cytokine Res., 20(1), 31–39 (2000).

    Article  PubMed  Google Scholar 

  • Doherty, P. C., Grosveld, G. C., and Ihle, J. N., Requirement for Stat4 in interleukin-12-mediated response of natural killer and T cells.Nature, 382, 171–174 (1996).

    Article  PubMed  Google Scholar 

  • Galdiero, M., Cipollaro del’Ero, G., Folgore, A., Cappello, M., Giobbe, A., and Sasso, F. S., Effects of irradiation doses on alteration in cytokine release by monocytes and lymphocytes.J. Med., 25, 23–40 (1994).

    PubMed  CAS  Google Scholar 

  • Gao, Q. P., Kiyohara, H., Cyong, J., and Yamada, H., Chemical properties and anticomplementary activities of heteroglycans from the leaves of panax ginseng.Planta Med., 57, 132–136 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Grimm, E. A., Mazumder, A., Zhang, Z., and Rosenberg, S. A., Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin-2 activated autologous human peripheral blood lymphocytes.J. Exp. Med., 155, 1823–1841 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Han, S. K., Song, J. Y., Yun, Y. S., and Yi, S. Y., Gamma irradiation reduced IFN-gamma expression, STAT-1 signal, and cell-mediated immunity.J. Biochem. Mol. Biol., 35(6), 583–589 (2002).

    PubMed  CAS  Google Scholar 

  • Khan, I. A. and Casciotti, L., IL-15 prolongs the duration of CD8+ T cell-mediated immunity in mice infected with a vaccine strain of Toxoplasma gondii.J. Immunol., 163(8), 4503–4509 (1999).

    PubMed  CAS  Google Scholar 

  • Kim, S. I., Kang, K. S., and Lee, Y. H., Panaxyne epoxide, a new cytotoxic polyne from panax ginseng root against L1210 cells.Arch. Pharm. Res., 12, 48–51 (1989).

    Article  CAS  Google Scholar 

  • Kim, Y. S., Kang, K. S., and Kim, S. I., Study on antitumor and immunomodulating activities of polysaccharides fraction from parax ginsans: Comparison of effect of neutral and acidic polysaccharide fraction.Arch. Pharm. Res., 13, 330–337 (1990).

    Article  Google Scholar 

  • Lee, Y. S., Jung, I. S., Lee, I. R., Kim, K. W., Hong, W. S., and Yun, Y. S., Activation of Multiple Effecter pathway of immune system by the antineoplastic immunostimulator acidic polysaccharide ginsan isolated from panax ginseng.Anticancer Res., 17, 323–331 (1997).

    PubMed  CAS  Google Scholar 

  • Maeda, Y. Y., Watanabe, S. T., Chilara, G., and Rokutanda, M., T-cell mediated vascular dilation and hemorrhage induced by antitumor polysaccharide.Intl. J. Immunopharmacol, 6, 493–501 (1984).

    Article  CAS  Google Scholar 

  • Mule, J. J., Shu, S., and Rosenberg, S., The antitumor efficacy of lymphokine-activated killer cells and recombinant interleukin-2in vivo.J. Immunol., 135, 646–652 (1985).

    PubMed  CAS  Google Scholar 

  • Murren, J. R. and Buzaid, A. C., The role of interferons in the treatment of malignant neoplasms.Yale J. Biol. Med., 62, 271–290 (1989).

    PubMed  CAS  Google Scholar 

  • Ochoa, A. C., Gromo, G., Alter, B. J., Sondel, P. M., and Bach, F. II., Long-term growth of lymphokine-activated killer (LAK) cells: role of anti-CD3, blL-1, interferon-g and -b.J. immunol., 138, 2728–2733 (1987).

    PubMed  CAS  Google Scholar 

  • Oldham, R. K., Biological response modifiers program and chemotheraphy.Int. J. Tissue React., 4, 173–188 (1982).

    PubMed  CAS  Google Scholar 

  • Pharmacognosy, Korea association of pharmacognosy, hakchang press (1995).

  • Rosenberg, S., Lotze, M., Muul, L., Leitman, S., Chang, A., Ettinghausen, S., Matury, Y., Skibber, J., Shilon, E., Vetto, J., Seipp, C., Simpson, C., and Reichert, C., Observation on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer.N. Engl. J. Med., 313, 1485–1492 (1985).

    PubMed  CAS  Google Scholar 

  • Shuat, K., Horvath, C. M., Huang, L. H. T., Qureshi, S. A., Cowburn, D., and Darnell, J. E., Interferon activation of transcription factor Stat1 involves dimerization through SH2-Phosphotyrosyl peptide interactions.Cell, 76, 821–828 (1994).

    Article  Google Scholar 

  • Singh, V. K., George, C. X., Singh, N., Agarwal, S. S., and Gupta, B. M., Combined treatment of mice with Panax ginseng extract and interferon inducer.Planta Med., 47, 234–236 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Smalley, R. V. and Oldham, R. K., Phase I trials of biological response modifiers.Drugs Exptl. Clin. Res., 12, 31–39 (1986).

    CAS  Google Scholar 

  • Song, J. Y., Han, S. K., Bae, K. G., Lim, D. S., Son, S. J., Jung, I. S., Yi, S. I., and Yun, Y. S., Radioprotective effects of Ginsan, an immunomodulator.Radiat. Res., 159(6), 768–774 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Song, J. Y., Han, S. K., Son, E. H., Pyo, S. N., Yun, Y. S., Yi, S. Y., Induction of secretory and tumoricidal activities in peritoneal macrophages by Ginsan.Int. Immunopharmacol., 2(7), 857–865 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Sredni, B., Caspi, R. R., Klein, A., Kalechman, Y., Danziger, Y., BenYa’akov, M., Tamari, T., Shalit, F., and Albeck, M., A new immunomodulating compound (AS101) with potential therapeutic application.Nature, 330, 173–176 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Strander, H., Clinical effects of interferon therapy with special emphasis on antitumor efficacy.Acta Oncologica, 28, 355–362 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Talmadge, J. E. and Herberman, R. B., The preclinical screening laboratory: Evaluation of immunomodulatory and therapeutic properties of biological response modifiers.Cancer Treatment Reports, 70, 171–182 (1986).

    PubMed  CAS  Google Scholar 

  • Talmadge, J. E., Fidler, I. J., and Oldham, R. K., The NCI preclinical screen of biological response modifiers.Behring Inst. Mitt., 74, 189–194 (1984).

    PubMed  Google Scholar 

  • Uchida and Micksche, M.,In vitro augmentation of natural killing activity by OK-432.Int. J. Immunopharmac., 3, 365–375 (1981).

    Article  CAS  Google Scholar 

  • Wiltrout, R. H. and Hornung, R. L., natural products as antitumor agents: direct versus indirect mechanisms of activity of flavonoids.J. Natl.Cancer Institute, 80, 220–222 (1988).

    Article  CAS  Google Scholar 

  • Wimer, B. M., The ideal biological response modifier.Mol. Biother., 1, 311–317 (1989).

    PubMed  CAS  Google Scholar 

  • Yanagawa, E., Yasumoto, K., Ohta, M., Nomoto, K., Azuma, I., and Yamamura, Y., Comparative study on antitumor effect of cell-wall skeleton of Mycobacterium bovis BCG and Nocardia rubra, with reference to T-cell dependency and independency.JPN. J. Cancer Res., 70, 141–146 (1979).

    CAS  Google Scholar 

  • Yang, J. C., Mule, J. J., and Rosenberg, S., Murine lymphokine-activated killer (LAK) cells: phenotypic characterization of the precursors and effector cells.J. Immunol., 137, 715–722 (1986).

    PubMed  CAS  Google Scholar 

  • Yun, Y.-S., Lee, Y.-S., Jo, S.-K., and Jung, l.-S., Inhibition of autochthonous tumor by ethanol insoluble fraction from panax ginseng as an immunostimulator.Planta medica, 59, 521–524 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seh-Yoon Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, SK., Song, JY., Yun, YS. et al. Ginsan improved Th1 immune response inhibited by gamma radiation. Arch Pharm Res 28, 343–350 (2005). https://doi.org/10.1007/BF02977803

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02977803

Key words

Navigation