Skip to main content
Log in

Intracerebral microdialysis technique and its application on brain pharmacokinetic-pharmacodynamic study

  • Article
  • Drug development
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Intracerebral microdialysis (IC-MD) has been developed as a well-validated and powerful technique for decades. As a practical sampling tool, it can gain the continuous dialysates of endogenous and exogenous substances in extracellular fluid (ECF) of awake freely moving animals. Also, variform IC-MD probes (IC-MDPs) have grown more exquisite. The implantation of the IC-MDP in certain tissue of brain allows monitor drug distribution and measure drug and corresponding neurotransmitters levels in brain ECF after administration for brain pharmacokinetic-pharmacodynamic (B-PK-PD) study. So it is suitable for IC-MD to B-PK-PD study (IC-MD/B-PK-PD). The performance of IC-MD/B-PK-PD can not only elevate the degree of precision and accuracy of experimental data, minimize the individual difference by reduced number of animals, but also give important information for the prediction and optimization of drug effective dose in preclinical study. In this review, we have discussed various IC-MD/B-PK-PD studies of analgesic, antiepileptic and antidepressant drug. The role of IC-MD/B-PK-PD in confirming and assessing the drug effect before clinic trials is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apelqvist, G., Wikell, C., Carlsson, B., Hjorth, S., Bergqvist, P. B., Ahlner, J., and Bengtsson, F., Dynamic and kinetic effects of chronic citalopram treatment in experimental hepatic encephalopathy.Clin. Neuropharmacol., 23, 304–317 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Alfinito, P. D., Huselton, C., Chen, X., and Deecher. D. C., Phar- macokinetic and pharmacodynamic profiles of the novel serotonin and norepinephrine reuptake inhibitor desvenla- faxine succinate in ovariectomized Sprague-Dawley rats.Brain Res., 1098, 71–78 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Ahmad, S., Fowler, L. J., and Whitton, P. S., Effects of combined lamotrigine and valproate on basal and stimulated extracellular amino acids and monoamines in the hippocampus of freely moving rats. Naunyn-Schmiedebergs.Arch. Pharmacol., 371, 1–8 (2005).

    Article  CAS  Google Scholar 

  • Breimer, D. D. and Danhof, M., Relevance of the application of pharmacokinetic-pharmacodynamic modeling concepts in drug development. The “Wooden Shoe” paradigm.Clin. Pharmacokin., 32, 259–267 (1997).

    Article  CAS  Google Scholar 

  • Brunner, M. and Langer, O., Microdialysis versus other techniques for the clinical assessment of in vivo tissue drug distribution.AAPS J., 8, E263-E272 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Bouw, M. R., Xie, R., Tunblad, K., and Hammarlund-Udenaeas M., Blood-brain barrier transport and brain distribution of morphine-6-glucuronide in relation to the antinociceptive effect in rats-pharmacokinetic/pharmacodynamic modelling.Br. J. Pharmacol., 134, 1796–1804 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Bouw, M. R., Gardmark, M., and Hammarlund-Udenaes, M., Pharmacokinetic-pharmacodynamic modelling of morphine transport across the blood-brain barrier as a cause of the antinociceptive effect delay in rats — a microdialysis study.Pharm. Res., 17, 1220–1228 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Bush, M. A. and Pollack, G. M., Pharmacokinetics and Phar- macodynamics of 7-Nitroindazole, a Selective Nitric Oxide Synthase Inhibitor in the Rat Hippocampus.Pharm. Res., 18, 1607–1612 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Berqqvist, P. B., Wikell, C., Hjorth, S., Bergqvist, P. B., Apeldqvist, G., and Bengtsson, F., Effect of citalopram on brain serotonin release in experimental hepatic encephalopathy: implications for thymoleptic drug safety in liver insufficiency.Clin. Neuropharmacol., 20, 511–522 (1997).

    Article  Google Scholar 

  • Bymaster, F. P., Lee, T. C., Knadler, M. P., Detke, M. J., and Ivenqar, S., The dual transporter inhibitor duloxetine: a review of its preclinical pharmacology, pharmacokinetic profile, and clinical results in depression.Curr. Pharm. Des., 11, 1475–1493 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Bundgaard, C., Jorqensen, M., and Mork, A., An integrated microdialysis rat model for multiple pharmacokinetic/pharma- codynamic investigations of serotonergic agents.J. Pharmacol. Toxicol. Methods., 55, 214–223 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Bickel, U., How to measure drug transport across the blood- brain barrier.NeuroRx., 2, 15–26 (2005).

    Article  PubMed  Google Scholar 

  • Boschi, G. and Scherrmann, J., Microdialysis in mice for drug delivery research.Adv. Drug Deliv. Rev., 45, 271–281 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Bourne, J. A., Intracerebral microdialysis: 30 years as a tool for the neuroscientist.Clin. Exp. Pharmacol. Physiol., 30, 16–24 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Benturquia, N., Parrot, S., Sauvinet, V., Renaud, B., and Denoroy, L., Simultaneous determination of vigabatrin and amino acid neurotransmitters in brain microdialysates by capillary electrophoresis with laser-induced fluorescence detection.J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci., 806, 237–244 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Chenel, M., Marchand, S., Dupuis, A., Lamarche, I., Paquereau, J., Pariat, C., and Couet, W., Simultaneous central nervous system distribution and pharmacokinetic-pharmacodynamic modelling of the electroencephalogram effect of norfloxacin administered at a convulsant dose in rats.Br. J. Pharmacol., 142, 323–330 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Cuadrado, A., Bravo, J., and Armijo, J. A., Synergistic interaction between felbamate and lamotrigine against seizures induced by 4-aminopyridine and pentylenetetrazole in mice.Eur. J. Pharmacol., 465, 43–52 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, M. O. and Jones, R. S., The anticonvulsant lamotrigine decreases spontaneous glutamate release but increases spontaneous GABA release in the rat entorhinal cortex in vivo.Neuropharmacology, 39, 2139–2141 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Cleton, A., Altorf, B. A., Voskuyl, R. A., and Danhof, M., Effect of amygdala kindling on the central nervous system effects of tiagabine: Effects versus brain GABA levels.Br. J. Pharmacol.,, 130, 1037–1044 (2000).

    Article  CAS  Google Scholar 

  • Clinckers, R., Smolders, I., Meurs, A., Ebinger, G., and Michotte, Y., Hippocampal dopamine and serotonin elevations as pharmacodynamic markers for the anticonvulsant efficacy of oxcarbazepine and 10,11-dihydro-10-hydroxycarbamazepine.Neurosci. Lett. 390, 48–53 (2005a).

    Article  CAS  Google Scholar 

  • Clinckers, R., Smolders, I., Meurs, A., Ebinger, G., and Michotte, Y., Quantitative in vivo microdialysis study on the influence of multidrug transporters on the blood-brain barrier passage of oxcarbazepine: conconmitant use of hippocampal monoamine as pharmacodynamic markers for the anticonvulsant activity.J. Pharmacol. Exp. Ther., 314, 725–731 (2005b).

    Article  PubMed  CAS  Google Scholar 

  • Dash, A. K. and Elmquist, W. F., Separation methods that are capable of revealing blood-brain barrier permeability.J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci., 797, 241- 254 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Delgado, J. M., DeFeudis, F. V., Roth, R. H., Ryugo, D. K., and Mitruka, B. M., Dialytrode for long term intracerebral perfusion in awake monkeys.Arch. Int. Pharmacodyn. Ther., 198, 9–21 (1972).

    PubMed  CAS  Google Scholar 

  • Danhof, M., Alvan, G., Dahl, S. G., Kuhlmann, J., and Paintaud, G., Mechanism-based pharmacokinetic/pharmacodynamic modeling — a new classification of biomarkers.Pharm. Res., 22, 1432–1437 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Davies, M. I., Cooper, J. D., Desmond, S. S., Lunte, C. E., and Lunte, S. M., Analytical considerations for microdialysis sampling.Adv. Drug Deliv. Rev., 45, 169–188 (2000).

    Article  PubMed  CAS  Google Scholar 

  • D’Souza, M. S. and Duvauchelle, C. L., Comparing nucleus accumbens and dorsal striatal dopamine responses to self-administered cocaine in naive rats.Neurosci. Lett., 408, 146- 150 (2006).

    Article  PubMed  CAS  Google Scholar 

  • de Lang, E. C., Danhof, M., de Boer, A. G., and Breimer, D. D., Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on drug transport across the blood-brain barrier.Brain Res. Rev., 25, 27–49 (1997).

    Article  Google Scholar 

  • de Lang, E. C., Ravenstijn P. G., Groenendaal D., and van Steeg, T. J., Toward the prediction of CNs drug-effect profiles in physiological and pathological conditions using MD and mechanism-based pharmacokinetic-pharmacodynamic modeling.AAPSJ., 7, E532-E543 (2005).

    Article  CAS  Google Scholar 

  • Ferrer, A. and Artiqas, F., Effects of single and chronic treatment with tranylcypromine on extracellular serotonin in rat brain.Eur. J. Pharmacol., 263, 227–34 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Feelisch, M., Biotransformation to nitric oxide of organic nitrates in comparison to other nitrovasodilators.Eur. Heart J., 14, 123–132 (1993).

    PubMed  CAS  Google Scholar 

  • Greig, N. H., De, Micheli E., Holloway, H. W., Yu, Q. S., Utsuki, T., Perry, T. A., Brossi, A., Ingram, D. K., Deutsch, J., Lahiri, D. K., and Soncrant, T. T., The experimental Alzheimer drug phenserine: preclinical pharmacokinetics and pharmacody- namics.Acta. Neurol. Scand. Suppl., 176, 74–84 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Groenendaal, D., Biom-Roosemalen, M. C., Danhof, M., and Lange, E. C., High-performance liquid chromatography of nalbuphine, butorphanol and morphine in blood and brain microdialysate samples: application to pharmacokinetic/ pharmacodynamic studies in rats.J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci., 822, 230–237 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Gatto, G. J., Bohme, G. A., Caldwell, W. S., Letchworth, S. R., Traina, V. M., Obinum, M. C., Laville, M., Reibaud, M., Pradier, L, Dunbar, G., and Bencherif, M., TC-1734: an orally active neuronal nicotinic acetylcholine receptor modulator with antidepressant neuroprotective and long-lasting cognitive effects.CNS. Drug. Rev., 10, 147–166 (2004).

    PubMed  CAS  Google Scholar 

  • Horn, T. F. and Engelmann, M., In vivo microdialysis for nona- peptides in rat brain — a practical guide,Methods, 23, 41–53 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Hernandez, L., Stanley, B. G., and Hoebel, B. G., A small, removable microdialysis probe.Life. Sci., 39, 2629–2637 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Hernandez, L. and Hoebel, B. G., Haloperidol given chronically decreases basal dopamine in the prefrontal cortex more than the striatum or nucleus accumbens as simultaneously measured by microdialysis.Brain Res. Bull., 22, 763–769 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Heinzen, E. L. and Pollack, G. M., Pharmacodynamics of morphine-induced neuronal nitric oxide production and antinoci-ceptive tolerance development.Brain Res., 1023, 175–184 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Hedava, M. A. and Pan W. J., Cocaine pharmacokinetics/ pharmacodynamics in awake freely moving rats.Pharm. Res., 14, 1099–1113 (1997).

    Article  Google Scholar 

  • Ichikawa, J., Kuroki, T., and Meltzer, H. Y., Differential effects of chronic imipramine and fluoxetine on basal and amphetamine-induced extracellular dopamine levels in rat nucleus accumbens.Eur. J. Pharmacol., 350, 159–164 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, I., Sandberg, M., and Hamberger, A., Mass transfer in brain dialysis devices — a new method for the estimation of extracellular amino acids concentration.J. Neurosci. Methods, 15, 263–268 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Jonker, D. M., Visser, S. A., Graaf, P. H., Voskuyl, R. A., and Danhof, M., Towards a mechanism-based analysis of pharmacodynamic drug-drug interactions in vivo.Pharmacol. Ther., 106, 1–18 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Khan, S. H. and Shuaib, A., The technique of intracerebral microdialysis.Methods, 23, 3–9 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Lonnroth, P., Jansson P. A., and Smith U., A microdialysis method allowing characterization of intercellular water space in humans.Am. J. Physiol., 253, E228-E231 (1987).

    PubMed  CAS  Google Scholar 

  • Larsson, C. I., The use of an “internal standard” for control of the recovery in microdialysis.Life Sci., 49, PL73-PL78 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Landgraf, R., Neumann, I., Russel, J. A., and Pittman, Q. J., Push-pull perfusion and microdialysis studies of central oxytocin and vasopressin release in freely moving rats during pregnancy, parturition, and lactation.Ann. N. Y. Acad. Sci.,, 652, 326–339 (1992).

    Article  CAS  Google Scholar 

  • Li, F., Feng, J., Cheng, Q., Zhu, W., and Jin, Y., Delivery of125I- cobrotoxin after intranasal administration to the brain: A microdialysis study in freely moving rats.Int. J. Pharm., 328, 161–167 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Peris, J., Zhong, L., and Derendorf, H., Microdialysis as a tool in local pharmacodynamics.AAPS J., 8, E222-E235 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Mano, Y., Hiquchi, S., and Kamimura, H., Investigation of the high partition of YM992, a novel antidepressant, in rat brain — in vitro and in vivo evidence for the high binding in brain and the high permeability at the BBB.Biopham. Drug Dispos., 23, 351–360 (2002).

    Article  CAS  Google Scholar 

  • Netigh, G. N., Arnold, H. M., Rabenstein, R. L., Sailer, M., and Bruno, J. P., Neuronal activity in the nucleus accumbens is necessary for performance-related in cortical acetylcholine release.Neuroscience, 123, 635–645 (2004).

    Article  CAS  Google Scholar 

  • Obrenovitch, T. P., Urenjak, J., Richards, D. A., Ueda, Y., Curzon, G., and Symon, L., Extracellular neuroactive amino acids in the rat brain striatum during ischaemia: comparison between penumbral conditions and ischaemia with sustained anoxic depolarisation.J. Neurochem., 61, 178–186 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Orlowska-Majdak M., Microdialysis of the brain structures: application in behavioral research on vasopressin and oxytocin.Acta. Neurobiol. Exp.(Wars), 64, 177–188 (2004).

    Google Scholar 

  • Plock, N. and Kloft, C., Microdialysis — theoretical background and recent implementation in applied life-sciences.Eur. J. Pharm. Sci., 25, 1–24 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Peerdeman, S. M., Girbes, A. R., and Vandertop, W. P., Cerebral microdialysis as a new tool for neurometabolic monitoring.Intensive Care. Med., 26, 662–669 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Stahl, M., Bouw R., Jackson A., and Pay V., Human microdialysis.Curr. Pharm. Biotechnol., 3, 165–178 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Swanson, C. J., Perry, K. W., Koch-Krueger, S., Katner, J., Svensson, K. A., and Bvmaster, F. P., Effect of the attention deficit/hyperactivity disorder drug atomoxetine on extracellular concentrations of norepinephrine and dopamine in several brain regions of the rat.Neuropharmacology, 50, 755–760 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Tsai, T. H., Assaying protein unbound drugs using microdialysis techniques.J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci., 797, 161–173 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt, U., Microdialysis — principles and applications for studies in animals and man.J. Intern. Med., 230, 365–373 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt, U. and Pycock, C., Functional correlates of dopamine neurotransmission.Bull. Schweiz. Akad. Med. Wiss., 30, 44–55 (1974).

    PubMed  CAS  Google Scholar 

  • Vezzani, A., Ungerstedt, U., French, E. D., and Schwarcz, R., In vivo brain dialysis of amino acids and simultaneous EEG measurements following intrahippocampal quinolinic acid injection: evidence for a dissociation between neurochemical changes and seizures.J. Neurochem., 45, 335–344 1985).

    Article  PubMed  CAS  Google Scholar 

  • Westerink B. H., Brain microdialysis and its application for the study of animal behaviour.Behav. Brain Res., 70, 130–124 (1995).

    Article  Google Scholar 

  • Weikop, P., Eqestad, B., and Kehr, J., Application of triple-probe microdialysis for fast pharmacokinetic/pharmacodynamic evaluation of dopamimetic activity of drug candidates in the rat brain.J. Neurosci. Methods, 140, 59–65 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Wikell, C., Apelqvist, G., Hjorth, S., Kullingsjo, J., Bergqvist, P. B., and Bengtsson, F., Effects on drug disposition, brain monoamines and behavior after chronic treatment with the antidepressant venlafaxine in rats with experimental hepatic encephalopathy.Eur. Neuropsychopharmacol., 12, 327–336 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Wikell, C., Kugelberg F. C., Hjorth, S., Apeldqvist, G., and Bengtsson, F., Effect of halving the dose of venlafaxine to adjust for putative pharmacokinetic and pharmacodynamic changes in an animal model of chronic hepatic encephalopathy.Clin Neuropharmacal, 24, 324–333 (2001a).

    Article  CAS  Google Scholar 

  • Wikell, C., Hjorth, S., Apeldqvist, G., Kullingsjo, J., Lundmark, J., Bergqvist, P. B., and Bengtsson, F., Sustained administration of the antidepressant venlafaxine in rats: pharmacokinetic and pharmacodynamic findings.Naunyn Schmiedebergs Arch Pharmacol., 363, 448–455 (2001b).

    Article  PubMed  CAS  Google Scholar 

  • Wong, D. T., Duloxetine (LY 248686): an inhibitor of serotonin and noradrenaline uptake and an antidepressant drug candidate.Expert. Opin. Investig. Drugs, 7, 1691–1699 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Yassen, A., Olofsen, E., Dahan, A., and Danhof M., Pharma- cokinetic-pharmacodynamic modeling of the antinociceptive effect of buprenorphine and fentanyl in rats: role of receptor equilibration kinetics.J. Pharmacol. Exp. Ther., 313, 1136- 1149 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Q. and Gallo, J. M., In vivo microdialysis for PK and PD studies of anticancer drugs.AAPS J., 7, E659-E667 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan-zhu Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Yf., Feng, J., Cheng, Qy. et al. Intracerebral microdialysis technique and its application on brain pharmacokinetic-pharmacodynamic study. Arch Pharm Res 30, 1635–1645 (2007). https://doi.org/10.1007/BF02977335

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02977335

Key words

Navigation