Skip to main content
Log in

Compounds obtained fromSida acuta with the potential to induce quinone reductase and to inhibit 7,12-dimethylbenz-[a]anthracene-induced preneoplastic lesions in a mouse mammary organ culture model

  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Activity-guided fractionation of the EtOAc-soluble extract of the whole plants ofSida acuta using a bioassay based on the induction of quinone reductase (QR) in cultured Hepa 1c1c7 mouse hepatoma cells, led to the isolation of ten active compounds of previously known structure, quindolinone (1), cryptolepinone (2), 11-methoxyquindoline (3),N-trans-feruloyltyramine (4), vomifoliol (5), loliolide (6), 4-ketopinoresinol (7), scopoletin (8), evofolin-A (9), and evofolin B (10), along with five inactive compounds of known structure, ferulic acid, sinapic acid, syringic acid, (±)-syringaresinol, and vanillic acid. These isolates were identified by physical and spectral data measurement. A new derivative of quindolinone, 5,10-dimethylquindolin-11-one (1a) was synthesized and characterized spectroscopically. Of the active substances, compounds1-3 and1a exhibited the most potent QR activity, with observed CD (concentration required to double induction) values ranging from 0.01 to 0.12 μg/mL. Six compounds were then evaluated in a mouse mammary organ culture assay, with cryptolepinone (2),N-trans-fer-uloyltyramine (4), and 5,10-dimethylquindolin-11-one (1a) found to exhibit 83.3, 75.0, and 66.7% inhibition of 7,12-dimethylbenz[a]anthracene-induced preneoplastic lesions, respectively, at a dose of 10 μg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Caceres, A., Giron, L. M., and Martinez, A. M., Diuretic activity of plants used for the treatment of urinary ailments in Guatemala.J. Ethnopharmacol., 19, 233–245 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Cao, J. and Qi, Y., Studies on the chemical constituents of the herb “Huanghuaren” (Sida acuta Burm. f.).Zhongguo Zhongyao Zazhi, 18, 681–682 (1993).

    PubMed  CAS  Google Scholar 

  • Chang, L. C., Gerhäuser, C., Song, L. L., Famsworth, N. R., Pezzuto, J. M., and Kinghorn, A. D., Activity-guided isolation of constituents o.Tephrosia purpurea with the potential to induce the phase II enzyme, quinone reductase.J. Nat. Prod., 60, 869–873 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Coee, F. G. and Anderson, G. J., Ethnobotany of the Garifuna of Eastern Nicaragua.Econ. Bot., 50, 71–107 (1996).

    Google Scholar 

  • Crouch, R. C., Davis, A. O., Spitzer, T. D., Martin, G. E., Sharaf, M. M. H., Schiff, P. L., Jr., Phoebe, C. H., Jr., and Tackie, A. N., Elucidation of the structure of quindolinone, a minor alkaloid o.Cryptolepis sanguinolenta: Submilligram1H-13C and1H-15N heteronuclear shift correlation experiments using micro inverse-detection.J. Heterocycl. Chem., 32, 1077–1080 (1995).

    CAS  Google Scholar 

  • Dinan, L., Bourne, P., and Whiting, P., Phytoecdysteroid profiles in seeds o.Sida spp. (Malvaceae).Phytochem. Anal., 12, 110–119 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Fort, D. M., Litvak, J., Chen, J. L., Lu, Q., Phuan, P.-W., Cooper, R., and Bierer, D. E., Isolation and unambiguous synthesis of cryptolepinone: An oxidation artifact of cryptolepine.J. Nat. Prod., 61, 1528–1530 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, N., Yonemitsu, M., and Kimura, T., Studies on the constituents of the stems o.Tinospora tuberculata BEUMéE. I.N-trans- andN-cis-feruloyl tyramine, and a new phenolic glucoside, tinotuberide.Chem. Pharm. Bull., 31, 156–161 (1983).

    CAS  Google Scholar 

  • Gerhäuser, C., You, M., Liu, J., Moriarty, R. M., Hawthorne, M., Mehta, R. G., Moon, R. C., and Pezzuto, J. M., Cancer chemopreventive potential of sulforamate, a novel analogue of suforaphane that induces phase 2 drug-metabolizing enzymes.Cancer Res., 57, 272–278 (1997).

    PubMed  Google Scholar 

  • Gorlitzer, K. and Ventzke-Neu, K., 10H-lndolo[3,2-b]quinoline-5-oxide (oxyquindoline) and some of its derivatives.Pharmazie, 52, 919–926 (1997).

    Google Scholar 

  • Gu, J.-Q., Park, E. J., Schunke Vigo, J., Graham, J. G., Fong, H. H. S., Pezzuto, J. M., and Kinghorn, A. D., Activity-guided isolation of constituents o.Renealmia nicolaioides with the potential to induce the phase II enzyme quinone reductase.J. Nat. Prod., 65, 1616–1620 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Gunatilaka, A. A. L., Sotheeswaran, S., Balasubramaniam, S., Chandrasekara, A. I., and Sriyani, H. T. B., Studies on medicinal plants of Sri Lanka. Ill: Pharmacologically important alkaloids of som.Sida species.Planta Med., 39, 66–72 (1980).

    CAS  Google Scholar 

  • Han, B. H., Park, M. H., Han, Y N., and Manalo, J. B., Studies on the antiinflammatory activity o.Aralia continentalis. II. Isolation of two phenolic acids from the hydrolyzate of butanol fraction.Arch. Pharm. Res., 6, 75–77 (1983).

    Article  CAS  Google Scholar 

  • Hong, W. K. and Sporn, M. B., Recent advances in chemo-prevention of cancer.Science, 278, 1073–1077 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Huang, Z., Dostal, L., and Rosazza, J. P. N., Mechanisms of ferulic acid conversions to vanillic acid and guaiacol b.Rhodotorula rubra. J. Biol. Chem., 268, 23954–23958 (1993).

    CAS  Google Scholar 

  • Hussain, S. F., Gözler, B., Shamma, M., and Gözler, T., Feruloyltyramine fro.Hypecoum.Phytochemistry, 21, 2979–2980 (1982).

    Article  CAS  Google Scholar 

  • Lida, T., Noro, Y., and Ito, K., Magnostellin A and B, novel lignans fromMagnolia stellata.Phytochemistry, 22, 211–213 (1983).

    Article  Google Scholar 

  • Jang, D. S., Park, E. J., Hawthorne, M. E., Vigo, J. S., Graham, J. G., Cabieses, F., Santarsiero, B. D., Mesecar, A. D., Fong, H. H. S., Mehta, R. G., Pezzuto, J. M., and Kinghorn, A. D., Constituents ofMusa x paradisiaca cultivar with the potential to induce the phase II enzyme, quinone reductase.J. Agric. Food Chem., 50, 6330–6334 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kang, S. Y., Sung, S. H., Park, J. H., and Kim, Y. C., Hepatoprotective activity of scopoletin, a constituent o.Solanum lyratum.Arch. Pharm. Res., 21, 718–722 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Kelloff, G. J., Boone, C. W., Malone, W. F., and Steele, V. E., Recent results in preclinical and clinical drug development of chemopreventive agents at the National Cancer Institute. In Wattenberg, L., Lipkin, M., Boone, C. W., and Kelloff, G. J. (Eds.).Cancer Chemoprevention. CRC Press, Boca Raton, FL, pp. 41–56 (1992).

    Google Scholar 

  • Kennelly, E. J., Gerhäuser, C., Song, L. L., Graham, J. G., Beecher, C. W. W., Pezzuto, J. M., and Kinghorn, A. D., Induction of quinone reductase by withanolides isolated fro.Physalis philadelphica (Tomatillos).J. Agric. Food Chem., 45, 3771–3777 (1997).

    Article  CAS  Google Scholar 

  • Kinghorn, A. D., Su, B.-N., Lee, D., Gu, J.-Q., and Pezzuto, J. M., Cancer chemopreventive agents discovered by activity-guided fractionation: an update.Curr. Org. Chem., 7, 213–226 (2003).

    Article  CAS  Google Scholar 

  • Lam, L. K. T., Sparnins, V. L., and Wattenberg, L. W., Isolation and identification of kahweol palmitate and cafestol palmitate as active constituents of green coffee beans that enhance glutathione S-transferase activity in the mouse.Cancer Res., 42, 1193–1198 (1982).

    PubMed  CAS  Google Scholar 

  • Lee, S.-J., Yun, Y.-S., Lee, I.-K., Ryoo, I.-J., Yun, B.-S., and Yoo, I.-D., An antioxidant lignan and other constituents from the root bark o.Hibiscus syriacus.Planta Med., 65, 658–660 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Long, R. W. and Lakela, O.,A Flora of Tropical Florida; A Manual of the Seed Plants and Ferns of Southern Peninsular Florida. University of Miami Press, Coral Gables, FL, pp. 601–602 (1971).

    Google Scholar 

  • Martin, G. E. Guido, J. E., Robins, R. H., Sharaf, M. H. M., Schiff, P. L., Jr., and Tackie, A. N., Submicro inverse-detection gradient NMR: A powerful new way of conducting structure elucidation studies with <0.05 μmol samples.J. Nat. Prod., 61, 555–559 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Maxuitenko, Y. Y., MacMillan, D. L., Kensler, T. W., and Roebuck, B. D., Evaluations of the post-initiation effects of oltipraz on aflatoxin B1-induced preneoplastic foci in a rat model of hepatic tumorigenesis.Carcinogenesis, 14, 2423–2425 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Mehta, R. G. and Moon, R. C., Characterization of effective chemopreventive agents in mammary glan.in vitro using an initiation-promotion protocol.Anticancer Res., 11, 593–596 (1991).

    PubMed  CAS  Google Scholar 

  • Nawwar, M. A. M., Buddrus, J., and Bauer, H., Dimeric phenolic constituents from the roots o.Tamarix nilotica.Phytochemistry, 21, 1755–1758 (1982).

    CAS  Google Scholar 

  • Otsuka, H., Takeuchi, M., Inoshiri, S., Sato, T., and Yamasaki, K., Phenolic compounds fro.Coix lachryma-jobi var.mayuen. Phytochemistry, 28, 883–886 (1989).

    Article  CAS  Google Scholar 

  • Pezzuto, J. M., Song, L. L., Lee, S. K., Shamon, L. A., Mata-Greenwood, E., Jang, M., Jeong, H.-J., Pisha, E., Mehta, R. G., and Kinghorn, A. D., Bioassay methods useful for activity-guided isolation of natural product cancer chemopreventive agents. In Hostettmann, K., Gupta, M. P., and Marston, A. (Eds.).Chemistry, Biological and Pharmacological Properties of Medicinal Plants from the Americas. Harwood Academic Publishers, Amsterdam, pp. 81–110 (1999).

    Google Scholar 

  • Prakash, A., Varma, R. K., and Ghosal, S., Chemical constituents of Malvaceae. Part III: Alkaloidal constituents o.Sida acuta, S. humilis, S. rhombifolia andS. spinosa. Planta Med., 43, 384–388 (1981).

    CAS  Google Scholar 

  • Prochaska, H. J., and Santamaria, A. B., Direct measurement of NAD(PH):quinone reductase from cells in microtiter wells: a screening assay for anticarcinogenic enzyme inducers.Anal. Biochem., 169, 328–336 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Rao, R. V. K., Satyanarayana, T., and Rao, B. V. K., Phytochemical investigations on the roots o.Sida acuta growing in Waltair.Fitoterapia, 55, 249–250 (1984).

    CAS  Google Scholar 

  • Su, B.-N., Misico, R., Park, E. J., Santarsiero, B. D., Mesecar, A. D., Fong, H. H. S., Pezzuto, J. M., and Kinghorn, A. D., Isolation and characterization of bioactive principles of the leaves and stems o.Physalis philadelphica.Tetrahedron, 58, 3453–3466 (2002).

    Article  CAS  Google Scholar 

  • Su, B.-N., Park, E. J., Nikolic, D., Santarsiero, B. D., Mesecar, A. D., Vigo, J. S., Graham, J. G., Cabieses, F., Van Breemen, R. B., Fong, H. H. S., Farnsworth, N. R., Pezzuto, J. M., and Kinghorn, A. D., Activity-guided isolation of novel norwithanolides fro.Deprea subtriflora with potential cancer chemopreventive activity.J. Org. Chem., 68, 2350–2361 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Talalay, P., De Long, M. J., and Prochaska, H. J., Molecular mechanisms in protection against carcinogenesis. In Cory, J. G., and Szentivanyi, A. (Eds.).Cancer Biology and Therapeutics. Plenum Press, New York, NY, pp. 197–216 (1981).

    Google Scholar 

  • Tanaka, R. and Matsunaga, S., Loliolide and olean-12-en-3β,9α,11α-triol fro.Euphorbia supina.Phytochemistry, 28, 1699–702 (1989).

    Article  CAS  Google Scholar 

  • Wattenberg, L. W., An overview of chemoprevention: current status and future prospects.Proc. Soc. Exp. Biol. Med., 216, 133–141 (1997).

    PubMed  CAS  Google Scholar 

  • Wettasinghe, M., Shahidi, F., Amarowicz, R., and Abou-Zaid, M. M., Phenolic acids in defatted seeds of borage (Borago officinalis L.).Food Chem., 75, 49–56 (2001).

    Article  CAS  Google Scholar 

  • Wu, T.-S., Teh, J.-H., and Wu, P.-L., The heartwood constituents o.Tetradium glabrifolium.Phytochemistry, 40, 121–124 (1995).

    Article  CAS  Google Scholar 

  • Zhang, Y., Talalay, P., Cho, C.-G., and Posner, G. H., A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure.Proc. Natl. Acad. Sci. U.S.A., 89, 2399–2403 (1992).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Douglas Kinghorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, D.S., Park, E.J., Kang, YH. et al. Compounds obtained fromSida acuta with the potential to induce quinone reductase and to inhibit 7,12-dimethylbenz-[a]anthracene-induced preneoplastic lesions in a mouse mammary organ culture model. Arch Pharm Res 26, 585–590 (2003). https://doi.org/10.1007/BF02976704

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02976704

Key words

Navigation