Skip to main content
Log in

Tyrosinase inhibitors isolated from the edible brown algaEcklonia stolonifera

  • Research Article
  • Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Extracts from seventeen seaweeds were determined for tyrosinase inhibitory activity using mushroom tyrosinase with L-tyrosine as a substrate. Only one of them,Ecklonia stolonifera Okamura (Laminariaceae) belonging to brown algae, showed high tyrosinase inhibitory activity. Bioassay-guided fractionation of the active ethyl acetate (EtOAc) soluble fraction from the methanolic extract ofE. stolonifera, led us to the isolation of phloroglucinol derivatives [phloroglucinol (1), eckstolonol (2), eckol (3), phlorofucofuroeckol A (4), and dieckol (5)]. Compounds1~5 were found to inhibit the oxidation of L-tyrosine catalyzed by mushroom tyrosinase with IC50 values of 92.8, 126, 33.2, 177, and 2.16 μg/mL, respectively. It was compared with those of kojic acid and arbutin, well-known tyrosinase inhibitors, with IC50 values of 6.32 and 112 μg/ mL, respectively. The inhibitory kinetics analyzed from Lineweaver-Burk plots, showed compounds1 and2 to be competitive inhibitors with Ki of 2.3×10-4 and 3.1×10-4 M, and compounds3×5 to be noncompetitive inhibitors with Ki of 1.9×10-5, 1.4×10-3 and 1.5×10-5 M, respectively. This work showed that phloroglucinol derivatives, natural compounds found in brown algae, could be involved in the control of pigmentation in plants and other organisms through inhibition of tyrosinase activity using L-tyrosine as a substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altena, A. and Steinberg, P. D., Are differences in the responses between North American and Australasian marine herbivores to phlorotannins due to differences in phlorotannin structure?Biochem. Syst. Ecol., 20, 493–499 (1992).

    Article  Google Scholar 

  • Andersen, S. O., Biochemistry of insect cuticle.Anna Rev. Entomol., 24, 29–61 (1979).

    Article  CAS  Google Scholar 

  • Boettcher, A. A. and Targett, N. M., Role of polyphenolic molecular size in reduction of assimilation efficiency inXiphister mucosus.Ecology, 74, 891–903 (1993).

    Article  CAS  Google Scholar 

  • Choi, J. S., Lee, J. H., Park, H. J., Kim, H. G., Young, H. S., and Mun, S. I., Screening for antioxidant activity of plant and marine algae and its active principles fromPrunus davidiana.Kor. J. Pharmacogn., 24, 299–303 (1993).

    CAS  Google Scholar 

  • Fukuyama, Y., Miura, I., Kinzyo, Z., Mori, H., Kido, M., Nakayama, Y., Takahashi, M., and Ochi, M., Eckols, novel phlorotannins with a dibenzo-p-dioxin skeleton possessing inhibitory effects on α2-macroglobulin from the brown algaEcklonia kurome Okamura.Chem. Lett., 739–742 (1985).

  • Fukuyama, Y., Kodama, M., Miura, I., Kinzyo, Z., Kido, M., Mori, H., Nakayama, Y., and Takahashi, M., Structure of an anti-plasmin inhibitor, eckol, isolated from the brown algaEcklonia kurome Okamura and inhibitory activities of its derivatives on plasma plasmin inhibitors.Chem. Pharm. Bull., 37, 349–353 (1989a).

    PubMed  CAS  Google Scholar 

  • Fukuyama, Y., Kodama, M., Miura, I., Kinzyo, Z., Mori, H., Nakayama, Y., and Takahashi, M., Anti-plasmin inhibitor. V. Structures of novel dimeric eckols isolated from the brown algaEcklonia kurome Okamura.Chem. Pharm, Bull., 37, 2438–2440 (1989b).

    CAS  Google Scholar 

  • Fukuyama, Y., Kodama, M., Miura, I., Kinzyo, Z., Mori, H., Nakayama, Y., and Takahashi, M., Anti-plasmin inhibitor. VI. Structure of phlorofucofuroeckol A, a novel phlorotannin with both dibenzo-1,4-dioxin and dibenzofuran elements, from the brown algaEcklonia kurome Okamura.Chem. Pharm. Bull., 38, 133–135 (1990).

    PubMed  CAS  Google Scholar 

  • Goetghebeur, M. and Kermasha, S., Inhibition of polyphenol oxidase by copper-metallothionein fromAspergillus niger.Phytochemistry, 42, 935–940 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Han, E. S., Kim, J. W., Eom, M. O., Kang, I. H., Kang, H. J., Choi, J. S., Ha, K. W., and Oh, H. Y., Inhibitory effects ofEcklonia stolonifera on gene mutation on mouse lymphoma tk+/- locus in L5178Y-3.7.2C cell and bone marrow micronuclei formation in ddY mice.Environ. Mutagen. Carcinogen., 20, 104–111 (2000).

    Google Scholar 

  • Hay, M. E., Marine plant-herbivore interactions: the ecology of chemical defense.Ann. Rev. Ecol. Syst, 19, 111–145 (1988).

    Article  Google Scholar 

  • Higa, T., Phenolic substances. In Scheuer, P. J. (Ed.). Marine Natural Products, Chemical and Biological Perspectives. Vol. IV. Academic Press, New York, pp. 119–123 (1981).

    Google Scholar 

  • Kang, H. S., Chung, H. Y., Jung, J. H., Son, B. W., and Choi, J. S., A new phlorotannin from the brown algaEcklonia stolonifera.Chem. Pharm. Bull., 51, 1012–1014 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Kang, H. S., Chung, H. Y., Kim, J. Y., Son, B. W., Jung, H. A., and Choi, J. S., Inhibitory phlorotannins from the edible brown algaEcklonia stolonifera on total reactive oxygen species (ROS) generation.Arch. Pharm. Res., 27, 194–198 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y. M., Yun, J., Lee, C. K., Lee, H. H., Min, K. R., and Kim, Y., Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action.J. Biol. Chem., 277, 16340–16344 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Khan, V. and Andrawis, A., Inhibition of mushroom tyrosinase by tropolone.Phytochemistry, 24, 905–908 (1985).

    Article  Google Scholar 

  • Kubo, I. and Kinst-Hori, I., Flavonols from saffron flower: tyrosinase inhibitory activity and inhibition mechanism.J. Agric. Food Chem., 47, 4121–4125 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Kurata, K., Taniguchi, K., Shiraishi, K., Hayama, N., Tanaka, I., and Suzuki, M., Ecklonialactone-A and -B, two unusual metabolites from the brown algaeEcklonia stolonifera Okamura.Chem. Lett., 267–270 (1989).

  • Kurata, K., Taniguchi, K., Shiraishi, K., and Suzuki, M., Ecklo-nialactones C-F from the brown algaEcklonia stolonifera.Phytochemistry, 33, 155–159 (1993).

    Article  CAS  Google Scholar 

  • Lee, J. H., Kim, N. D., Choi, J. S., Kim, Y. J., Heo, M. Y., Lim, S. Y., and Park, K. Y., Inhibitory effects of the methanolic extract of an edible brown alga,Ecklonia stolonifera and its component, phloroglucinol on aflatoxin B1 mutagenicityin vitro (Ames test) and on benzo(a)pyrene orN-methylN-nitrosourea clastogenicityin vivo (mouse micronucleus test).Nat. Prod. Sci., 4, 105–114 (1998).

    CAS  Google Scholar 

  • Lee, J. H., Oh, H. Y., and Choi, J. S., Preventive effect ofEcklonia stolonifera on the frequency of benzo(a)pyrene-induced chromosomal aberrations.J. Food Sci. Nutr., 1, 64–68 (1996).

    Google Scholar 

  • Lee, J. H., Park, J. C., and Choi, J. S., The antioxidant activity ofEcklonia stolonifera.Arch. Pharm. Res., 19, 223–227 (1996).

    Article  CAS  Google Scholar 

  • Mason, H. S., Structures and functions of the phenolase complex.Nature, 177, 79–81, (1956).

    Article  PubMed  CAS  Google Scholar 

  • Mayer, A. M., Polyphenol oxidase in plants — Recent progress.Phytochemistry, 26, 11–20 (1987).

    Article  Google Scholar 

  • Mitani, Y. and Sakai, S., Eckols as tyrosinase inhibitors.Jpn. Kokai Tokyo Koho, JP 04235110 (1992).

  • Nagayama, K., Iwamura, Y., Shibata, T., Hirayama, I., and Nakamura, T., Bactericidal activity of phlorotannins from the brown algaEcklonia kurome.J. Antimicro. Chemother., 50, 889–893 (2002).

    Article  CAS  Google Scholar 

  • Nakamura, T., Nagayama, K., Uchida, K., and Tanaka, R., Antioxidant activity of phlorotannins isolated from the brown algaEisenia bicyclis.Fish. Sci., 62, 923–926 (1996).

    CAS  Google Scholar 

  • Nakayama, Y., Takahashi, M., Fukuyama, Y., and Kinzyo, Z., An anti-plasmin inhibitor, eckol, isolated from the brown algaEcklonia kurome Okamura.Agric. Biol. Chem., 53, 3025–3030 (1989).

    CAS  Google Scholar 

  • Nerya, O., Vaya, J., Musa, R., Izrael, S., Ben-Arie, R., and Tamir, S., Glabrene and isoliquiritigenin as tyrosinase inhibitors from Licorice Roots.J. Agric. Food Chem., 51, 1201–1207 (2003).

    Article  PubMed  CAS  Google Scholar 

  • No, J. K., Soung, D. Y., Kim, Y. J., Shim, K. H., Jun, Y. S., Rhee, S. H., Yokozawa, T., and Chung, H. Y., Inhibition of tyrosinase by green tea components.Life Sci., 65, PL 241–246 (1999).

    Google Scholar 

  • Okada, Y., Ishimaru, A., Suzuki, R., and Okuyama, T., A new phloroglucinol derivative from the brown algaEisenia bicyclis. Potential for the effetive treatment of diabetic complications.J. Nat. Prod., 67, 103–105 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Onodera, J., Yamamoto, T., Abe, K., and Ueno, N., Cosmetics containing phloroglucinol derivatives.Jpn. Kokai Tokyo Koho, Jp 06092835 (1994).

  • Pérez-Bernal, A., Muñoz-Pérez, M. A., and Camacho, F., Management of facial hyperpigmentation.Am. J. Clin. Derm., 1, 261–268 (2000).

    Article  Google Scholar 

  • Schallreuter, K. U., A review of recent advances on the regulation of pigmentation in the human epidermis.Cell Mol. Biol., 45, 943–949 (1999).

    PubMed  CAS  Google Scholar 

  • Segel, I. H., Enzyme. In Segel, I. H. (ed.). Biochemical Calculations. John Wiley & Sons Inc., New York, pp. 246–256 (1976).

    Google Scholar 

  • Shin, N. H., Ryu, S. Y., Choi, E. J., Kang, S. H., Chang, I. M., Min, K. R., and Kim, Y., Oxyresveratrol as the potent inhibitor on dopa oxidase activity of mushroom tyrosinase.Biochem. Biophys. Res. Commun., 243, 801–803 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Stem, J., Hagerman, A., Steinberg, P., and Magon, P., Phlorotannin-protein interactions.J. Chem. Ecol., 22, 1877–1899 (1996).

    Article  Google Scholar 

  • Taniguchi, K., Kurata, K., and Suzuki, M., Feeding-deterrent effect of phlorotannins from the brown algaEcklonia stolonifera against the abaloneHaliotis discus Hannai.Nippon Suisan Gakkaishi, 57, 2065–2071 (1991).

    CAS  Google Scholar 

  • Targett, N. M., Boettcher, A. A., Targett, T. E., and Vrolijk, N. H., Tropical marine herbivore assimilation of phenolic-rich plants.Oecologia, 103, 170–179 (1995).

    Article  Google Scholar 

  • Whitaker, J. R., Polyphenol oxidase, In Wong, D. W. S. (ed.). Food Enzymes, Structure and Mechanism, Chapman & Hall, New York, pp. 271–307 (1995).

    Google Scholar 

  • Wilcox, D. E., Porras, A. G., Hwang, Y. T., Lerch, K., Winkler, M. E., and Solomon, E. I., Substrate analogue binding to the coupled binuclear copper active site in tyrosinase.J. Am. Chem. Soc., 107, 4015–4027 (1985).

    Article  CAS  Google Scholar 

  • Xu, Y., Stokes, A. H., Freeman, W. M., Kumer, S. C., Vogt, B. A., and Vrana, K. E., Tyrosinase mRNA is expressed in human substantia nigra.Mol. Brain Res., 45, 159–162 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Yokochi, N., Morita, T., and Yagi, T., Inhibition of diphenolase activity of tyrosinase by vitamin B6 compounds.J. Agric. Food Chem., 51, 2733–2736 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Sue Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, H.S., Kim, H.R., Byun, D.S. et al. Tyrosinase inhibitors isolated from the edible brown algaEcklonia stolonifera . Arch Pharm Res 27, 1226–1232 (2004). https://doi.org/10.1007/BF02975886

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02975886

Key words

Navigation