Skip to main content
Log in

Meiotic recombination in filamentous fungi

  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The exchange of genes by crossing over and by gene conversion is a basic process in eukaryotes. Fungi have played a special role in the study of this process because they permit tetrad analysis, which provides complete information on the distribution of genes and chromosomes in meiosis. Recombination is detected by new combinations of genetic markers. The first observation gave only the simple picture of a crossover provided by two segregating loci far apart on the chromosome. Later the discovery of recombination between sites within a gene led to a revolution in our knowledge of this process. Today we carry the resolution a step further with RFLP markers, which can detect the details of recombination down to nucleotide distances. I review here observations on filamentous fungi, which have contributed to this pursuit at each stage of the emerging synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asch D. K. and Kinsey J. A. 1990 Relationship of vector insert size to homologous integration during transformation ofNeurospora crassa with the clonedam (GDH) gene,Mol. Gen. Genet. 221: 37–43

    Article  PubMed  CAS  Google Scholar 

  • Benzer S. 1955 Fine structure of a genetic region in bacteriophage.Proc. Natl. Acad. Sci. USA 41: 344–354

    Article  PubMed  CAS  Google Scholar 

  • Bole-Gowda B. N., Perkins D. D. and Strickland W. N. 1962 Crossing-over and interference in the centromere region of linkage group I of Neurospora.Genetics 47: 1243–1252

    PubMed  CAS  Google Scholar 

  • Bowring F. J. and Catcheside D. E. A., 1993 The effect ofrec-2 on repeat-induced point-mutation (RIP) and recombination events that excise DNA sequence duplications at thehis-3 locus inNeurospora crassa.Curr. Genet. 23: 496–500

    Article  PubMed  CAS  Google Scholar 

  • Bowring F. J. and Catcheside D. E. A. 1996 Gene conversion alone accounts for more than 90% of recombination events at theam locus ofNeurospora crassa.Genetics 143: 129–136

    PubMed  CAS  Google Scholar 

  • Catcheside D. E. A. 1986 A restriction and modification model for the initiation and control of recombination in Neurospora.Genet. Res. 47: 157–165

    PubMed  CAS  Google Scholar 

  • Catcheside D. G. 1975 Regulation of genetic recombination inNeurospora crassa. InThe eukaryote genome (eds.) W. J. Peacock and R. D. Brock (Canberra: Australian National University Press) pp. 301–312

    Google Scholar 

  • Colot V. and Rossignol J. 1995 Isolation of theAscobolus immersus spore color geneb2 and study in single cells of gene silencing by methylation induced premeiotically.Genetics 141: 1299–1314

    PubMed  CAS  Google Scholar 

  • Colot V., Maloisel L. and Rossignol J. 1996 Interchromosomal transfer of epigenetic states in Ascobolus: transfer of DNA methylation is mechanistically related to homologous recombination.Cell 86: 855–864

    Article  PubMed  CAS  Google Scholar 

  • Crick F. H. C., Barnett L., Brenner S. and Watts-Tobin R. J. 1961 General nature of the genetic code for proteins.Nature 192:1227–1232

    Article  PubMed  CAS  Google Scholar 

  • Demerec M., Blomstrand I. and Demerec Z. E. 1955 Evidence of complex loci in Salmonella.Proc. Natl. Acad. Sci. USA 41: 359–364

    Article  PubMed  CAS  Google Scholar 

  • Fincham J. 1988 Hazards in sexual transmission.Nature 331: 207–208

    Article  PubMed  CAS  Google Scholar 

  • Fogel S. and Mortimer R. K. 1970 Fidelity of gene conversion in yeast.Mol. Gen. Genet. 109: 177–185

    Article  Google Scholar 

  • Hawthorne D. C. and Mortimer R. K. 1960 Chromosome mapping in Saccharomyces: centromere linked genes.Genetics 45: 1084–1110

    Google Scholar 

  • Holliday R. 1964 A mechanism for gene conversion in fungi.Genet. Res. 5: 282–304

    Google Scholar 

  • Holliday R. 1968 Genetic recombination in fungi. InReplication and recombination of genetic material (eds.) W. J. Peacock and R. D. Brock (Canberra: Australian Academy of Science) pp. 157–174

    Google Scholar 

  • Irelan J. T., Hagemann A. T. and Selker E. U. 1994 High frequency repeat-induced point mutation (RIP) is not associated with efficient recombination in Neurospora.Genetics 138: 1093–1103

    PubMed  CAS  Google Scholar 

  • Jessop A. P. and Catcheside D. G. 1965 Interallelic recombination at thehis-1 locus inNeurospora crassa and its genetic control.Heredity 20: 237–256

    Article  PubMed  CAS  Google Scholar 

  • Käfer E. and Mayor O. 1986 Genetic analysis of DNA repair in Aspergillus: evidence for different types of MMS-sensitive hyperrec mutants.Mutat. Res. 161: 119–134

    PubMed  Google Scholar 

  • King J. S. and Mortimer R. K. 1990 A polymerization model of chiasma interference and corresponding computer simulation.Genetics 126: 1127–1138

    PubMed  CAS  Google Scholar 

  • Kitani Y., Olive L. S. and El-Ani A. S. 1962 Genetics ofSordaria fimicola. V. aberrant segregation at the G locusAm. J. Bot. 49: 697–706

    Article  Google Scholar 

  • Lamb B. C. 1996 Ascomycete genetics: the part played by ascus segregation phenomena in our understanding of the mechanisms of recombination.Mycol. Res. 100: 1025–1059

    Google Scholar 

  • Leblon G. 1972 Mechanism of gene conversion inAscobolus immersus. 1. Existence of a correlation between the origin of mutants induced by different mutagens and their conversion spectrum.Mol. Gen. Genet. 115: 36–48

    Article  Google Scholar 

  • Lewis E. B. 1951 Pseudoallelism and gene evolution.Cold Spring Harbor Symp. Quant. Biol. 16: 159–174

    PubMed  CAS  Google Scholar 

  • Lindegren C. C. 1953 Gene conversion in Saccharomyces.J. Genet. 51: 625–637

    Article  Google Scholar 

  • Lissouba P., Mousseau J., Rizet G. and Rossignol J. L. 1962 Fine structure of genes in the ascomyceteAscobolus immersus. Adv. Genet. 11: 343–380

    Article  Google Scholar 

  • Meselson M. S. and Radding C. M. 1975 A general model for genetic recombination.Proc. Natl. Acad. Sci. USA 72: 358–361

    Article  PubMed  CAS  Google Scholar 

  • Mitchell M. B. 1955 Aberrant recombination of pyridoxine mutants of Neurospora.Proc. Natl. Acad. Sci. USA 41: 215–220

    Article  PubMed  CAS  Google Scholar 

  • Morgan T. H., Sturtevant A. H., Muller H. J. and Bridges C. B. 1915The mechanism of Mendelian heredity (New York: Henry Holt)

    Google Scholar 

  • Murray N. E, 1963 Polarized recombination and fine structure within theme-2 gene ofNeurospora crassa.Genetics 48: 1163–1183

    PubMed  CAS  Google Scholar 

  • Nicolas A. and Rossignol J. L. 1989 Intermediates in homologous recombination revealed by marker effects in Ascobolus.Genome 31: 528–535

    CAS  Google Scholar 

  • Olive L. S. 1959 Aberrant tetrads inSordaria fimicola.Proc. Natl Acad. Sci. USA 45: 727–732

    Article  PubMed  CAS  Google Scholar 

  • Orr-Weaver T. L., Szostak J. W. and Rothstein R. J. 1981 Yeast transformation: a model system for the study of recombination.Proc. Natl. Acad. Sci. USA 78: 6354–6358

    Article  PubMed  CAS  Google Scholar 

  • Paquette N. and Rossignol J. L. 1978 Gene conversion spectrum of 15 mutants giving post-meiotic segregation in theb2 locus ofAscobolus immersus.Mol. Gen. Genet. 163: 313–326

    Article  Google Scholar 

  • Perkins D. D. 1962 Crossingover and interference in a multiply marked chromosome arm of Neurospora.Genetics 47: 1253–1274

    PubMed  CAS  Google Scholar 

  • Perkins D. D. and Bojko M. 1992 The basis of decreased recombination in certain outcrosses ofNeurospora crassa.Genome 35: 503–509

    PubMed  CAS  Google Scholar 

  • Petes T. D., Malone R. E. and Symington L. S. 1991 Recombination in yeast. InThe molecular and cellular biology of the yeast Saccharomyces (eds.) J. R. Broach, E. W. Jones and J. R. Pringle (Cold Spring Harbor: Cold Spring Harbor Laboratory Press) vol. 1, pp. 407–521

    Google Scholar 

  • Pritchard R. H. 1955 The linear arrangement of a series of alleles ofAspergillus nidulans.Heredity 9: 343–371

    Article  Google Scholar 

  • Roman H. 1956 Studies of gene mutation in Saccharomyces.Cold Spring Harbor Symp. Quant. Biol. 21: 175–185

    PubMed  CAS  Google Scholar 

  • Selker E. U. 1990 Premeiotic instability of repeated sequences in Neurospora.Anna. Rev. Genet. 24: 579–613

    Article  CAS  Google Scholar 

  • Stadler D. R. and Towe A. M. 1963 Recombination of allelic cysteine mutants in Neurospora.Genetics 48: 1323–1344

    PubMed  CAS  Google Scholar 

  • Stadler D. R. and Towe A. M. 1971 Evidence for meiotic recombination in Ascobolus involving only one member of a tetrad.Genetics 68: 401–413

    PubMed  CAS  Google Scholar 

  • Stahl F. 1996 Meiotic recombination in yeast: coronation of the double-strand-break repair model.Cell 87: 965–968

    Article  PubMed  CAS  Google Scholar 

  • Sun H., Treco D., Schultes N. P. and Szostak J. W. 1989 Double-strand breaks at an initiation site for meiotic gene conversion.Nature 338: 87–89

    Article  PubMed  CAS  Google Scholar 

  • Sun H., Treco D. and Szostak J. W. 1991 Extensive 3’-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at thearg4 recombination initiation site.Cell 64:1155–1161

    Article  PubMed  CAS  Google Scholar 

  • Sym M. and Roeder G. S. 1994 Crossover interference is abolished in the absence of a synaptinemal complex protein.Cell 79: 283–292

    Article  PubMed  CAS  Google Scholar 

  • Szostak J. W., Orr-Weaver T. L., Rothstein R. J. and Stahl F. W. 1983 The double-strand-break repair model for recombination.Cell 33:25–35

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse H. L. K. 1963 A theory of crossingover by means of hybrid deoxyribonucleic acid.Nature 199: 1034–1040

    Article  PubMed  CAS  Google Scholar 

  • Zhao P. and Kafer E. 1992 Effects of mutagen-sensitivemus mutations on spontaneous mitotic recombination in Aspergillus.Genetics 130: 717–728

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadler, D.R. Meiotic recombination in filamentous fungi. J. Genet. 75, 265–280 (1996). https://doi.org/10.1007/BF02966307

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02966307

Keywords

Navigation