Skip to main content
Log in

Design of a two-phase loop thermosyphon for telecommunications system (II)

Analysis and simulation

  • Published:
KSME International Journal Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 1999

Abstract

A computer simulation is performed for a two-phase loop thermosyphon for the B-ISDN telecommunications. The aim of this code development is to provide capabilities to predict the affects of many variables on the performance of the proposed TLT system using different empirical correlations obtained from the literature for the evaporation and condensation, and the shape factors available. In the present study, the simulation code is based on the sectorial thermal resistance network built on the flow regimes of the two-phase flows involved. The nodal resistances are solved by the typical Gauss-Seidal iteration method. The code can predict whether the proposed design is possible based on the flooding limit calculation of the system and its results are compared with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Area (m2)

A f :

Flow area occupied by liquid phase (m2)

A g :

Flow area occupied by vapour phase (m2)

a :

Evaporator thickness (m)

A x :

Cross sectional area (m2)

b :

Evaporator width (m)

C :

Parameter

C pt :

Specific heat of saturated liquid (J/kgK)

C SF :

A constant on Rohsenow’s pool boiling correlation

D :

Outer diameter of tube (m), parameter

d :

linner diameter (m)

D h :

Hydraulic diameter (m)

F :

Frictional parameter

f :

Friction factor

G :

Mass flux (kg/m2s)

g :

Acceleration due to gravity (m2/s)

H :

Specific enthalpy (J/kg)

h :

Heat transfer coefficient (W/m2 K), evaporator depth (m)

H fluid :

Specific enthalpy of fluid (J/kg)

H f :

Specific enthalpy of saturated liquid (J/kg)

H fg :

Latent heat of evaporation (J/kg)

k :

Thermal conductivity (W/m K)

L :

Length (m)

Nu :

Nusselt number

ΔP a :

Acceleration pressure drop

ΔP f :

Frictional pressure drop

ΔP h :

Hydraulic pressure drop

P :

Pressure (Pa)

(dP/dy) p :

Pressure gradient

Pr :

Prandtl number

Q :

Heat transfer rate (W)

q :

Heat flux (W/cm2)

R :

Resistance (K/W)

r :

Radius (m)

Ra :

Rayleigh number

Re :

Reynolds number

S :

Shape factor, defined as eqn. (2)

T, t :

Temperature (°C)

Δt :

Temperature difference between the heater and air (°C)

TCT :

Two-phase closed thermosyphon

TLT :

Two-phase loop thermosyphon

U T :

Overall heat transfer coefficient (W/m2 K)

ν:

Liquid or vapor flow velocity

W :

Mass rate of flow (kg/s)

WF :

Working fluid

W f :

Mass rate of flow of liquid phase (kg/s)

W g :

Mass rate of flow of gas phase (kg/s)

We :

Weber number

X :

Lockhart-Martinelli parameter

x :

Vapor quality

y :

Axis

a :

Acceleration in pressure gradient and pressure drop

air :

Surrounding air

b :

Bulk, boiling, bottom, bended section in Appendix E

cold :

Cold section

c, cond :

Condensation, condenser section

conv :

Convection

cr :

Critical

ct :

Condenser tube

e :

Equivalent

ev :

Evaporation, evaporator

e 3 :

Effective in dry-out region

ea :

Average evaporator

eb :

Average bulk

esb :

Effective subcooling boiling

ew :

Average evaporator wall

f :

Fluid, f is frictional for pressure drop term

f, tp :

Two-phase frictional pressure drop

do :

Dry-out region

fil :

Filler

g :

Gas, vapor state

h :

Heater, hot for Rescb, hydraulic for pressure drop

hol :

Heating section

i :

Inner

l :

Liquid, unit length

loop :

Thermosyphon loop

lp :

Liquid-phase

max :

Maximum

mis :

Miscellaneous

o :

Outer

pl :

Evaporator plate

s, sat :

Saturation

scb :

Subcooled boiling

T :

Total

t :

Tube

tp :

Two-phase

tr :

Transporting section

v :

Vapour

w :

Wall

α:

Void fraction (α=A g/AT)

γ:

Inclination angle (degree)

δ:

Thickness (m)

η:

Efficiency

θ:

Bended angle

μ:

Viscosity (kg/ms)

ρ:

Density (kg/m3)

σ:

Suface tension (N/m)

ϕ:

Diameter

ψ:

Defined in Appendix E

ζ:

Loss coefficient

References

  • Ali, A. F. M. and McDonald, T. W. 1977, “Thermosyphon Loop Performance Characteristics: Part 2, Simulation Program,”ASHRAE trans., Vol. 83, pt. 2, pp. 260–278.

    Google Scholar 

  • Bejan, A. 1993,Heat Transfer, John, Wiley & Sons Inc., New York.

    Google Scholar 

  • Collier, J. G. 1972,Convective Boiling and Condensation, 2nd edition, McGraw-Hill Book Company, New York.

    Google Scholar 

  • Faghri, A. 1995,Heat Pipe Science and Technology, Taylor & Francis, Washington, DC.

    Google Scholar 

  • Hewitt, G. F. Shiress G. L. and Bott, T. R. 1994,Process Heat Transfer, CRC Press, London.

    Google Scholar 

  • Holman, J. P. 1996,Heat Transfer, 8th ed., McGraw-Hill, New York.

    Google Scholar 

  • Ito, H. 1960, “Pressure Losses in Smooth Pipe Bends,”ASME Trans., Ser. D, Journal of Basic Engineering, vol. 82 (1), No. 13.

  • Kutateladze, S. S. 1963,Fundamentals of Heat Transfer, Edward Arnold Ltd., New York.

  • Kishimoto, T. et al., 1994, “Heat Pipe Cooling Technologies for Telecom JMCM’s,”Proceedings of 4th Int. Heat Pipe Symposium, Tsukuba, pp. 132–141.

  • Lavin J. G. and Young, H. Y. 1956, “Heat Transfer to Evaporating Refrigerants in Two-Phase Flow,”A. I. Ch. E. J, Vol. 11, No. 6, p. 1124.

    Google Scholar 

  • Mathur, C. D. 1996,A Simulation Program for Multiple Tube-Row Two-Phase Thermosyphon Coil Loop Heat Exchangers, Ph. D Thesis, University of Windsor.

  • Reid R. C. and Sherwood, T. K. 1966,The Properties of Gases and Liquids, 2th ed., McGraw-Hill, New York.

    Google Scholar 

  • Rhee B. W. and Young, H. Y. 1974, “Heat Transfer to Boiling Refrigerants Flowing Inside a Plaing Copper Tube,”A. I. Ch. E. Symposium, Series 64.

  • Rhi, S. H. Kim, W. T. and Lee, Y. 1997, “A Cooling System Using Wickless Heat Pipes for Multichip Modules: Experiment and Analysis”KSME Int. J., Vol. 11 No. 2, pp. 208–220.

    Google Scholar 

  • Sato T. and Matsumura, H. 1964, “On the Conditions of Incipient Subcooled Boiling and Forced Convection,”JSME, Vol. 7, No. 36, pp. 392–398.

    Google Scholar 

  • Sieder E. N. and Tate, G. E. 1936, “Heat Transfer and Pressure Drop of Liquids in Tubes,”Industrial and Eng., Chemistry, Vol. 28, No. 12, pp. 1429.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF03186450.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, W.T., Kim, K.S. & Lee, Y. Design of a two-phase loop thermosyphon for telecommunications system (II). KSME International Journal 12, 942–955 (1998). https://doi.org/10.1007/BF02945561

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02945561

Key Words

Navigation