Skip to main content

How environmental factors regulate mutagenesis and gene transfer in microorganisms

Abstract

This review is focused on the physiological and evolutionary strategies of the processes occurring during the entry of microbial cells into stationary phase and the subsequent period of stasis. The molecular mechanisms adapting microorganisms from exponential growth to a static state involve activation and complex regulation of the stationary factor Sigma-S, which directs RNA polymerase to the specific promoters. As a result the static cells acquire general resistance (simultaneous tolerances) to different environmental stresses. In parallel with the physiological adaptation to stasis, diverse genetical processes are aimed towards resuming the growth of the static cells. Different types of mutagenesis occur: (i) in cells entering stasis and (ii) in static cells (adaptive mutagenesis). Cessation of growth induces the transient hypermutator state resulting in the accumulation of random mutations in the subpopulation of the static cells. If by chance, one or a few of such mutations lead to resumption of division, the growing cell will return to a normal mechanism of spontaneous mutagenesis.

Another mechanism for generating genetical variability in stressed cells involves transposons and conjugative plasmids. Stresses can stimulate the excision of some transposons, which, in turn, can generate chromosomal mutations and activate intracellular mechanisms of mutagenesis. Under stress some conjugative plasmids activate genes encoding antirestriction proteins that repress restriction-modification systems of the recipient cells. Moreover, under stress special cellular mechanisms decrease (alleviate) the activity of restriction-modification systems which, in turn, enhance the probability of gene transfer into the stressed cells.

Under stress, the efficiency of inter-species genetical barriers also decreases. This, stimulates inter-species gene transfer and may lead to a burst of incipient speciation in the population of non-growing cells. After resumption of growth the genetical barriers leading to isolation will be restored.

In general, the cessation of growth “switches on”, and resumption of growth “switches off”, a set of special processes that are responsible for generating bursts of genetical variability in populations of microorganisms.

This is a preview of subscription content, access via your institution.

References

  • Aleshkin G I, Kadzhaev K V and Markov A P 1998 High and low UV-dose responses in SOS-induction of the precise excision of transposons Tn1, Tn5 and Tn10 inEscherichia colt;Mutat. Res. 401 179–191

    CAS  PubMed  Article  Google Scholar 

  • Almiron M, Link A J, Furlong D and Kolter R 1992 A novel DNA-binding protein with regulatory and protective roles in starvedEscherichia coli;Genes Dev. 6(12B) 2646–2654

    CAS  PubMed  Article  Google Scholar 

  • Altuvia S, Weinstein-Fischer D, Zhang A, Postow L and Storz G 1997 A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator;Cell 90 43–53

    CAS  PubMed  Article  Google Scholar 

  • Ambrose M and MacPhee D G 1998 Glucose and related catabolite repressors are powerful inhibitors of pKM101- enhanced UV mutagenesis inEscherichia coli;Mutat. Res. 422 107–112

    CAS  PubMed  Article  Google Scholar 

  • Arana I, Pocinp M, Muela A, Fernandez-Astorga A and Barcina I 1997 Detection and enumeration of viable but non- culturable transconjugants ofEscherichia coli during the survival of recipient cells in river water;J. Appl. Microbiol. 83 340–346

    CAS  PubMed  Article  Google Scholar 

  • Atlung T and Ingmer H 1997 H-NS: a modulator of environmetally regulated gene expression;Mol. Microbiol. 24 7–17

    CAS  PubMed  Article  Google Scholar 

  • Bagdasarian M, Bailone A, Angulo J F, Scholz P, Bagdasarian M and Devoret R 1992PsiB, and anti-SOS protein, is transiently expressed by the F sex factor during its transmission to anEscherichia coli K-12 recipient;Mol. Microbiol. 6 885–893

    CAS  PubMed  Article  Google Scholar 

  • Bailone A, Backman A, Sommer S, Celerier J, Bagdasarian M M, Bagdasarian M and Devoret R 1988PsiB polypeptide prevents activation ofRecA protein inEscherichia coli;Mol. Gen. Genet. 214 389–395

    CAS  PubMed  Article  Google Scholar 

  • Bailone A, Sommer S and Devoret R 1985 Mini-F plasmid-induced SOS signal inEscherichia coli isRecBC dependent;Proc. Natl. Acad. Sci. USA 82 5973–5977

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Barth M, Marschall C, Muffler A, Fischer D and Hengge-Aronis R 1995 Role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of sigma S and many sigma S-dependent genes inEscherichia coli;J. Bacteriol. 177 3455–3464

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Battaglia P A, Gigliani F, Marcucci L and Elli R 1987 Therep region of pR plasmid regulates the expression of SOS system;Mol. Gen. Genet. 209 41–48

    CAS  PubMed  Article  Google Scholar 

  • Becker G, Klauck E and Hengge-Aronis R 1999 Regulation ofRpoS proteolysis inEscherichia coli: the response regulatorRssB is a recognition factor that interacts with the turnover element inRpoS;Proc. Natl. Acad. Sci. USA 96 6439–6444

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Belogurov A A, Delver E P and Rodzevich O V 1992 IncN plasmid pKM101 and IncI1 plasmid ColIb-P9 encode homologous antirestriction proteins in their leading regions;J. Bacteriol. 1074 5079–5085

    Article  Google Scholar 

  • Belogurov A A, Delver E P and Rodzevich O V 1993 Plasmid pKM101 encodes two nonhomologous antirestriction proteins (ArdA and ArdB) whose expression is controlled by homologous regulatory sequences;J. Bacteriol. 175 4843–4850

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Benov L and Fridovich I 1996 The rate of adaptive mutagenesis inEscherichia coli is enhanced by oxygen (superoxide);Mutat. Res. 357 231–236

    PubMed  Article  Google Scholar 

  • Bloomfield S F, Stewart G S, Dodd C E, Booth I R and Power E G 1998 The viable but non-culturable phenomenon explained?;Microbiology 144 1–3

    CAS  PubMed  Article  Google Scholar 

  • Blum P H, Jovanovich S B, McCann M P, Schultz J E, Lesley S A, Burgess R R and Matin A 1990 Cloning and in vivo and in vitro regulation of cyclic AMP-dependent carbon starvation genes fromEscherichia coli;J. Bacteriol. 172 3813–3820

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Bogosian G, Morris P J and O’Neil J P 1998 A mixed culture recovery method indicates that enteric bacteria do not enter the viable but nonculturable state;Appl. Environ. Microbiol. 64 1736–1742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bohringer J, Fishcer D, Mosler G and Hengge-Arronis R 1995 UDP-glucose is a potential intrecellular signal molecule in the control of Sigma-S and Sigma-S dependent genes inEscherichia coli;J. Bacteriol. 177 414–422

    Article  Google Scholar 

  • Bouche S, Klauck E, Fischer D, Lucassen M, Jung K and Hengge-Aronis R 1998 Regulation of RssB-dependent proteolysis inEscherichia coli: a role for acetyl phosphate in a response regulator-controlled process;Mol. Microbiol. 27 787–795

    CAS  PubMed  Article  Google Scholar 

  • Bremer H and Ehrenberg M 1995 Guanosine tetraphosphate as a global regulator of bacterial RNA synthesis: a model involving RNA polymerase pausing and queuing;Biochim. Biophys. Acta 1262 15–36

    PubMed  Article  Google Scholar 

  • Bridges B A 1996 Mutation in resting cells: the role of endogenous DNA damage;Cancer Surv. 28 155–167

    CAS  PubMed  Google Scholar 

  • Bridges B A 1997 DNA turnover and mutation in resting cells;Bioessays 19 347–352

    CAS  PubMed  Article  Google Scholar 

  • Bridges B A 1998 The role of DNA damage in stationary phase (‘adaptive’) mutation;Mutat. Res. 408 1–9

    CAS  PubMed  Article  Google Scholar 

  • Bridges B A and Timms A 1998 Effect of endogenous carotenoids and defectiveRpoS sigma factor on spontaneous mutation under starvation conditions inEscherichia coli: evidence for the possible involvement of singlet oxygen;Mutat. Res. 403 21–28

    CAS  PubMed  Article  Google Scholar 

  • Caillet-Fauquet P and Maenhaut-Michel G 1988 Nature of the SOS mutator activity: genetic characterization of untargeted mutagenesis inEscherichia coli;Mol. Gen. Genet. 213 491–498

    CAS  PubMed  Article  Google Scholar 

  • Cairns J 1998 Mutation and cancer: the antecedents to our studies of adaptive mutation;Genetics 148 1433–1440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Capage M A and Scott J R 1983 SOS induction by P1 Km miniplasmids;J. Bacteriol. 155 473–480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan A, Levy M S and Nagel R 1994RecN SOS gene and induced precise excision of Tn10 inEscherichia coli;Mutat. Res. 325 75–79

    CAS  PubMed  Article  Google Scholar 

  • Chan A and Nagel R 1997 Involvement ofrecA andrecF in the induced precise excision of Tn10 inEscherichia coli;Mutat. Res. 381 111–115

    CAS  PubMed  Article  Google Scholar 

  • Chao L and McBroom S M 1985 Evolution of transposable elements: an IS10 insertion increases fitness inEscherichia coli;Mol. Biol. Evol. 2 359–369

    CAS  PubMed  Google Scholar 

  • Chilley P M and Wilkins B M 1995 Distribution of theardA family of antirestriction genes on conjugative plasmids;Microbiology 141 2157–2164

    CAS  PubMed  Article  Google Scholar 

  • Cunning C, Brown L and Elliott T 1998 Promoter substitution and deletion analysis of upstream region required forrpoS translational regulation;J. Bacteriol. 180 4564–4570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Day R S 1977 UV-induced alleviation of K-specific restriction of bacteriophage lambda;J. Virol. 21 1249–1251

    PubMed  PubMed Central  Google Scholar 

  • del Castillo I, Gomez J M and Moreno F 1990mprA anEscherichia coli gene that reduces growth-phase-dependent synthesis of microcins B17 and C7 and blocks osmoinduction ofproU when cloned on a high-copy-number plasmid;J. Bacteriol. 172 437–445

    PubMed  PubMed Central  Article  Google Scholar 

  • Delver E P, Agafonova O V, Tupikova E E, Vorob’eva E P and Belogurov A A 1998 System of regulating expression of antirestriction genesardA andardB, coding for the transmissive IncN plasmid pKM101 (Russ.);Mol. Biol. (Mosk.)32 242–248

    CAS  Google Scholar 

  • Ding Q, Kusano S, Villarejo M and Ishihama A 1995 Promoter selectivity control ofEscherichia coli RNA polymerase by ionic strength: differential recognition of osmoregulated promoters by E sigma D and E sigma S holoenzymes;Mol. Microbiol. 16 649–656

    CAS  PubMed  Article  Google Scholar 

  • DiRusso C C and Nystrom T 1998 The fats ofEscherichia coli during infancy and old age: regulation by global regulators, alarmones and lipid intermediates;Mol. Microbiol. 27 1–8

    CAS  PubMed  Article  Google Scholar 

  • Ebina Y, Takahara Y, Kishi F, Nakazawa A and Brent R 1983LexA protein is a repressor of the colicin E1 gene;J. Biol. Chem. 258 13258–13261

    CAS  PubMed  Google Scholar 

  • Eichenbaum Z and Livneh Z 1998 UV light induces IS10 transposition inEscherichia coli;Genetics 149 1173–1181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eraso J M, Chidambaram M and Weinstock G M 1996 Increased production of colicin E1 in stationary phase;J Bacteriol. 178 1928–1935

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Espinosa-Urgel M and Tormo A 1993 Sigma s-dependent promoters inEscherichia coli are located in DNA regions with intrinsic curvature;Nucleic Acids Res. 21 3667–3670

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Faqua C and Greenberg E P 1998 Self perception in bacteria: quorum sensisng with acylated homoserine lactones;Curr. Opin. Microbiol. 1 183–189

    Article  Google Scholar 

  • Farewell A, Kvint K and Nystrom T 1998 Negative regulation byRpoS: a case of sigma factor competition;Mol. Microbiol. 29 1039–1051

    CAS  PubMed  Article  Google Scholar 

  • Feng G, Tsui H C and Winkler M E 1996 Depletion of the cellular amounts of theMutS andMutH methyl-directed mis-match repair proteins in stationary-phaseEscherichia coli K-12 cells;J. Bacteriol. 178 2388–2396

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ferguson G P, Creighton R I, Nikolaev Y and Booth I R 1998 Importance ofRpoS and Dps in survival of exposure of both exponential- and stationary-phaseEscherichia coli cells to the electrophile Nethylmaleimide;J. Bacteriol. 180 1030–1036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Astorga A, Muela A, Cisterna R, Iriberri J and Barcina I 1992 Biotic and abiotic factors affecting plasmid transfer inEscherichia coli strains;Appl. Environ. Microbiol. 58 392–398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finkel S E and Kolter R 1999 Evolution of microbial diversity during prolonged starvation;Proc. Natl. Acad. Sci. USA 96 4023–4027

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Fomenko D E, Dziumenko E V and Khmel’ I A 1997 Role of therpoS gene in the regulation of expression of plasmid genes determining the synthesis of C51 microcin (Russ.);Genetika 33 284–286

    CAS  PubMed  Google Scholar 

  • Foster P L 1997 Nonadaptive mutations occur on the F′ episome during adaptive mutation conditions inEscherichia coli;J. Bacteriol. 179 1550–1554

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Foster P L 1999 Are adaptive mutations due to a decline in mismatch repair? The evidence is lacking;Mutat. Res. 436 179–184

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Foster P L and Cairns J 1992 Mechanisms of directed mutation;Genetics 131 783–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Lara J, Matninez-Vilamu M and Vives-Rego J 1993 Effect of previous growth conditions on the starvation-survival ofEscherichia coli in seawater;J. Gen. Microbiol. 139 1422–1431

    Article  Google Scholar 

  • Gauthier M J, Labedan B and Breittmayer V A 1992 Influence of DNA supercoiling on the loss of culturability ofEscherichia coli cells incubated in seawater;Mol. Ecol. 1 183–190

    CAS  PubMed  Article  Google Scholar 

  • Gentry D R, Hernandez V J, Nguyen L H, Jensen D B and Cashel M 1993 Synthesis of the stationary-phase sigma factor sigma s is positively regulated by ppGpp;J. Bacteriol. 175 7982–7989

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gigliani F, Ciotta C, Del Grosso M F and Battaglia P A 1993 pR plasmid replication provides evidence that single-stranded DNA induces the SOS system in vivo;Mol. Gen. Genet. 238 333–338

    CAS  PubMed  Article  Google Scholar 

  • Golovlev E L 1998 Another state of non-sporulating bacteria;Mikrobiologiya 67 725–735

    Google Scholar 

  • Golub E, Bailone A and Devoret R 1988 A gene encoding an SOS inhibitor is present in different conjugative plasmids;J. Bacteriol. 170 4392–4393

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gomez-Gomez J M, Blazquez J, Baquero F and Martinez J L 1997 H-NS andRpoS regulate emergence ofLac Ara+ mutants ofEscherichia coli MCS2;J. Bacteriol. 179 4620–4622

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gourmelon M, Touati D, Pommepuy M and Cormier M 1997 Survival ofEscherichia coli exposed to visible light in seawater: analysis of rpoS-dependent effects;Can. J. Microbiol. 43 1036–1043

    CAS  PubMed  Article  Google Scholar 

  • Gribbonn L T and Barer M R 1995 Oxidative metabolism in non-culturableHelicobacter pylory andVibrio vulnificans studied by susbstrate ehnanced tetrazolium reaction and image processing;Appl. Environ. Microbiol. 61 3379–3384

    Google Scholar 

  • Groisman E A, Heffron F and Soloman F 1992 Molecular genetics analysis of theEscherichia coli phoP locus;J. Bacteriol. 174 486–491

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Hall B G 1998a Adaptive mutagenesis: a process that generates almost exclusively beneficial mutations;Genetica 102 109–125

    PubMed  Article  Google Scholar 

  • Hall B G 1998b Adaptive mutagenesis atebgR is regulated byPhoPQ;J. Bacteriol. 180 2862–2865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall B G 1999 Spectra of spontaneous growth-dependent and adaptive mutations atebgR;J. Bacteriol. 181 1149–1155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hallet B and Sherratt D J 1997 Transposition and site-specific recombination: adapting DNA cut-and- paste mechanisms to a variety of genetic rearrangements;FEMS Microbiol. Rev. 21 157–178

    CAS  PubMed  Article  Google Scholar 

  • Harris R S, Bull H J and Rosenberg S M 1997a A direct role for DNA polymerase III in adaptive reversion of a frameshift mutation inEscherichia coli;Mutat. Res. 375 19–24

    CAS  PubMed  Article  Google Scholar 

  • Harris R S, Feng G, Ross K J, Sidhu R, Thulin C, Longerich S, Szigety S K, Winkler M E and Rosenberg S M 1997b Mismatch repair proteinMutL becomes limiting during stationary-phase mutation;Genes Dev. 11 2426–2437

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Harris R S, Longerich S and Rosenberg S M 1994 Recombination in adaptive mutation;Science 264 258–260

    CAS  PubMed  Article  Google Scholar 

  • Hengge-Aronis R 1993 The Role ofrpoS in Early Stationary phase Gene Regulation inEscherichia coli K12; inStarvation of bacteria (ed.) S Kjelleberg (New York: Plenum Press) pp 171–200

    Chapter  Google Scholar 

  • Hengge-Aronis R 1996 Back to log phase: sigma S as a global regulator in the osmotic control of gene expression inEscherichia coli;Mol. Microbiol. 21 887–893

    CAS  PubMed  Article  Google Scholar 

  • Hengge-Aronis R 1999 Interplay of global regulators and cell physiology in the general stress response ofEscherichia coli;Curr. Opin. Microbiol. 2 148–152

    CAS  PubMed  Article  Google Scholar 

  • Hengge-Aronis R, Klein W, Lange R, Rimmele M and Boos W 1991 Trehalose synthesis genes are controlled by the putative sigma factor encoded byrpoS and are involved in stationary-phase thermotolerance inEscherichia coli;J. Bacteriol. 173 7918–7924

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Hengge-Aronis R, Lange R, Henneberg N and Fischer D 1993 Osmotic regulation of rpoS-dependent genes inEscherichia coli;J. Bacteriol. 175 259–265

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Herman A and Wegrzyn G 1995 Effect of increased ppGpp concentration on DNA replication of different replicons inEscherichia coli;J. Basic Microbiol. 35 33–39

    CAS  PubMed  Article  Google Scholar 

  • Herzer P J 1996 Starvation-induced expression of retron-Ec107 and the role of ppGpp in multicopy single-stranded DNA production;J. Bacteriol. 178 4438–4444

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Hiom K J and Sedgwick S G 1992 Alleviation of EcoK DNA restriction inEscherichia coli and involvement ofumuDC activity;Mol. Gen. Genet. 231 265–275

    CAS  PubMed  Google Scholar 

  • Hiom K, Thomas S M and Sedgwick S G 1991 Different mechanisms for SOS induced alleviation of DNA restriction inEscherichia coli;Biochimie 73 399–405

    CAS  PubMed  Article  Google Scholar 

  • Horst J P, Wu T and Marinus M G 1999Escherichia coli mutator genes;Trends Microbiol. 7 29–36

    CAS  PubMed  Article  Google Scholar 

  • Huisman G W and Kolter R 1994 Sensing starvation: a homoserine lactone dependent signaling pathway inEscherichia coli;Science 265 537–539

    CAS  Article  PubMed  Google Scholar 

  • Humayun M Z 1998 SOS and Mayday: multiple inducible mutagenic pathways inEscherichia coli;Mol. Microbiol. 30 905–910

    CAS  PubMed  Article  Google Scholar 

  • Ibanez M, Alvarez I, Rodriguez-Pena J M and Rotger R A 1997 ColE1-type plasmid fromSalmonella enteritidis encodes a DNA cytosine methyltransferase;Gene 196 145–158

    CAS  PubMed  Article  Google Scholar 

  • Ishihama A 1999 Modulation of the nucleoid, the transcription apparatus, and the translation machinery in bacteria for stationary phase survival;Genes Cells 4 135–143

    CAS  PubMed  Article  Google Scholar 

  • Jenkins D E, Chaisson S A and Matin A 1990 Starvation- induced cross protection against osmotic challenge inEscherichia coli;J. Bacteriol. 172 2779–2781

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Jenkins D E, Schultz J E and Matin A 1988 Starvation-induced cross protection against heat or H2O2 challenge inEscherichia coli;J. Bacteriol. 170 3910–3914

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Jones A L, Barth P T and Wilkins B M 1992 Zygotic induction of plasmidssb andpsiB genes following conjugative transfer of Incl1 plasmid Collb-P9;Mol. Microbiol. 6 605–613

    CAS  PubMed  Article  Google Scholar 

  • Kajitani M and Ishihama A 1991 Identification and sequence determination of the host factor gene for bacteriophage Q beta;Nucleic Acids Res. 19 1063–1066

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kajitani M, Kato A, Wada A, Inokuchi Y and Ishihama A 1994 Regulation of theEscherichia coli hfq gene encoding the host factor for phage Q beta;J. Bacteriol. 176 531–534

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kell D B, Kaprelyants A S, Weichart D H, Harwood C R and Barer M R 1998 Viability and activity in readily culturable bacteria: a review and discussion of the practical issues;Antonie van Leeuwenhoek J. 73 169–187

    CAS  Article  Google Scholar 

  • Kelleher J E and Raleigh E A 1994 Response to UV damage by fourEscherichia coli K-12 restriction systems;J. Bacteriol. 176 5888–5896

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kibota T T and Lynch M 1996 Estimate of the genomic mutation rate deleterious to overall fitness inE. coli;Nature (London) 381 694–696

    CAS  Article  Google Scholar 

  • Klauck E, Bohringer J and Hengge-Aronis R 1997 TheLysR- like regulatorLeuO inEscherichia coli is involved in the translational regulation ofrpoS by affecting the expression of the small regulatory DsrA-RNA;Mol. Microbiol. 25 559–569

    CAS  PubMed  Article  Google Scholar 

  • Klecner N, Chalmers R M, Kwon D, Sakai J and Bolland S 1996 Tn10 and IS10 transposition and chromosome rearrangements: mechanism and regulationin vivo andin vitro;Curr. Top. Microbiol. Immunol. 204 49–82

    Google Scholar 

  • Kjelleberg S I, Hermansson M, Marden P and Jones G W 1987 The transient phase between growth and nongrowth of heterotrophic bacteria with emphasis on the marine environment;Annu. Rev. Microbiol. 41 25–49

    CAS  PubMed  Article  Google Scholar 

  • Kolodner R D and Alani E 1994 Mismatch repair and cancer susceptibility;Curr. Opin. Biotechnol. 5 585–594

    CAS  PubMed  Article  Google Scholar 

  • Kolter R, Siegele, Torno A 1993 The stationaty phase of the bacterial life cycle;Ann. Rev. Microbiol. 47 855–874

    CAS  Article  Google Scholar 

  • Kuan C T, Liu S K and Tessman I 1991 Excision and transposition of Tn5 as an SOS activity inEscherichia coli;Genetics 128 45–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kusano S, Ding Q, Fujita N and Ishihama A 1996 Promoter selectivity ofEscherichia coli RNA polymerase E sigma 70 and E sigma 38 holoenzymes. Effect of DNA supercoiling;J. Biol. Chem. 271 1998–2004

    CAS  PubMed  Article  Google Scholar 

  • Lamrani S, Ranquet C, Gama M J, Nakai H, Shapiro J A, Toussaint A and Maenhaut-Michel G 1999 Starvation-induced Mucts62-mediated coding sequence fusion: a role for ClpXP, Lon,RpoS and Crp;Mol. Microbiol. 32 327–343

    CAS  PubMed  Article  Google Scholar 

  • Lange R, Fischer D and Hengge-Aronis R 1995 Identification of transcriptional start sites and the role of ppGpp in the expression ofrpoS, the structural gene for the sigma S subunit of RNA polymerase inEscherichia coli;J. Bacteriol. 177 4676–4680

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lange R and Hengge-Aronis R 1991 Growth phase regulated expression ofbolA and morphology of stationary phaseEscherichia coli cells are controlled by the novel factor Sigma;J. Bacteriol. 173 4474–4481

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lange R and Hengge-Aronis R 1994 The cellular concentration of the sigma S subunit of RNA polymerase inEscherichia coli is controlled at the levels of transcription, translation, and protein stability;Genes Dev. 8 1600–1612

    CAS  Article  PubMed  Google Scholar 

  • Lease R A, Cusick M E and Belfort M 1998 Riboregulation inEscherichia coli: DsrA RNA acts by RNA: RNA interactions at multiple loci;Proc. Natl. Acad. Sci. USA 95 12456–12461

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Leitao A C, Soares R A, Cardoso J S, Guillobel H C and Caldas L R 1993 Inhibition and induction of SOS responses inEscherichia coli by cobaltous chloride;Mutat. Res. 286 173–180

    CAS  PubMed  Article  Google Scholar 

  • LeClerc J E, Li B, Payne W L and Cebula T A 1996 High mutation frequencies amongEscherichia coli andSalmonella pathogens;Science 274 1208–1211

    CAS  PubMed  Article  Google Scholar 

  • LeClerc J E, Payne W L, Kupchella E and Cebula T A 1998 Detection of mutator subpopulations inSalmonella typhimurium LT2 by reversion of his alleles;Mutat. Res. 400 89–97

    CAS  PubMed  Article  Google Scholar 

  • Levy M S, Baibinder E, Nagel R and 1993 Effect of mutations in SOS genes on UV-induced precise excision of Tn10 inEscherichia coli;Mutat. Res. 293 241–247

    CAS  PubMed  Article  Google Scholar 

  • Little C A, Tweats D J and Pinney R J 1991 Plasmid pGW16, a derivative of pKM101, increases post-UV DNA synthesis, but sensitises some strains ofEscherichia coli to UV;Mutat. Res. 249 177–187

    CAS  PubMed  Article  Google Scholar 

  • Lloubes R, Baty D and Lazdunski C 1986 The promoters of the genes for colicin production, release and immunity in the ColA plasmid: effects of convergent transcription andLexA protein;Nucleic Acids Res. 14 2621–2636

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Loeb L A 1998 Cancer cells exhibit a mutator phenotype;Adv. Cancer Res. 72 25–56

    CAS  PubMed  Article  Google Scholar 

  • Loewen P C, Hu B, Strutinsky J and Sparling R 1998 Regulation in therpoS regulon ofEscherichia coli;Can. J. Microbiol. 44 707–717

    CAS  PubMed  Article  Google Scholar 

  • Longerich S, Galloway A M, Harris R S, Wong C and Rosenberg S M 1995 Adaptive mutation sequences reproduced by mismatch repair deficiency;Proc. Natl. Acad. Sci. USA 92 12017–12020

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Lorenzo C, Howard E and Nagel R 1990 Studies on Tn10 transposition and excision in DNA-repair mutants ofSalmonella typhimurium;Mutat. Res. 232 99–104

    CAS  PubMed  Article  Google Scholar 

  • Lundblad V and Kleckner N 1985 Mismatch repair mutations ofEscherichia coli K12 enhance transposon excision;Genetics 109 3–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lundblad V, Taylor A F, Smith G R and Kleckner N 1984 Unusual alleles ofrecB andrecC stimulate excision of inverted repeat transposons Tn10 and Tn5;Proc. Natl. Acad. Sci. USA 81 824–828

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Maas W K, Wang C, Lima T, Zubay G and Lim D 1994 Multicopy single-stranded DNAs with mismatched base pairs are mutagenic inEscherichia coli;Mol. Microbiol. 14 437–441

    CAS  PubMed  Article  Google Scholar 

  • MacPhee D G and Hafner L M 1988 Antimutagenic effects of chemicals on mutagenesis resulting from excision of a transposon inSalmonella typhimurium;Mutat. Res. 207 99–105

    CAS  PubMed  Article  Google Scholar 

  • Majdalani N, Cunning C, Sledjeski D, Elliott T and Gottesman S 1998 DsrA RNA regulates translation ofRpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription;Proc. Natl. Acad. Sci. USA 95 12462–12467

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Malkhosyan S R, Panchenko Yu A and Rekesh A N 1991 A physiological role for DNA supercoiling in the anaerobic regulation of colicin gene expression;Mol. Gen. Genet. 225 342–345

    CAS  PubMed  Article  Google Scholar 

  • Matic I, Rayssiguier C and Radman M 1995 Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species;Cell 80 507–515

    CAS  PubMed  Article  Google Scholar 

  • Matic I, Taddei F and Radman M 1996 Genetic barriers among bacteria;Trends Microbiol. 4 69–72

    CAS  PubMed  Article  Google Scholar 

  • Matic I, Radman M, Taddei F, Picard B, Doit C, Bingen E, Denamur E and Elion J 1997 Highly variable mutation rates in commensal and pathogenicEscherichia coli;Science 277 1833–1834

    CAS  PubMed  Article  Google Scholar 

  • Matin A 1991 The molecular basis of carbon-starvation-induced general resistance inEscherichia coli;Mol. Microbiol. 5 3–10

    CAS  Article  PubMed  Google Scholar 

  • McClearly W R and Stock J B 1994 Acetyl phosphate and the activation of two-component response regulators;J. Biol. Chem. 269 31567–31572

    Google Scholar 

  • McFadden J and Knowles G 1997 Escape from evolutionary stasis by transposon-mediated deleterious mutations;J. Theor. Biol. 186 441–447

    CAS  PubMed  Article  Google Scholar 

  • McKenzie G J, Lombardo M J and Rosenberg S M 1998 Recombination dependent mutation inEscherichia coli occurs in stationary phase;Genetics 149 1163–1165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meury J and Kohiyama M 1991 Role of heat shock proteinDnaK in osmotic adaptation ofEscherichia coli;J. Bacteriol. 173 4404–4410

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Miller J H 1998 Mutators inEscherichia coli;Mutat. Res. 409 99–106

    CAS  PubMed  Article  Google Scholar 

  • Miller J H and Low K B 1984 Specificity of mutagenesis resulting from the induction of the SOS system in the absence of mutagenic treatment;Cell 37 675–862

    CAS  PubMed  Article  Google Scholar 

  • Moreno F, San Millan J L, Hernandez-Chico C and Kolter R 1995 Microcins;Biotechnology 28 307–321

    CAS  PubMed  Google Scholar 

  • Morita R Y 1988 Bioavailability of energy and its relationship to growth and stravation survival in nature;Can. J. Microbiol. 34 436–441

    CAS  Article  Google Scholar 

  • Muffler A, Barth M, Marschall C and Hengge-Arronis R 1997 Heat Shock Regulation of Sigma-S Turnover: a Role ofDnaK and Relationship between Stress Responses Mediated by Sigma-S and Sigma-32 inEschrichia coli;J. Bacteriol. 179 445–452

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Muffler A, Traulsen D D, Lange R and Hengge-Aronis R 1996a Posttranscriptional osmotic regulation of the sigma(s) subunit of RNA polymerase inEscherichia coli;J. Bacteriol. 178 1607–1613

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Muffler A, Fischer D, Altuvia S, Storz G and Hengge-Aronis R 1996b The response regulator RssB controls stability of the sigma(S) subunit of RNA polymerase inEscherichia coli;EMBO J. 15 1333–1339

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Muffler A, Fischer D and Hengge-Aronis R 1996c The RNA- binding protein HF-I, known as a host factor for phageQbeta RNA replication, is essential forrpoS translation inEscherichia coli;Genes Dev. 10 1143–1151

    CAS  PubMed  Article  Google Scholar 

  • Mukamolova G V, Kaprelyants A S, Young D I, Young M and Kell D B 1998 A bacterial cytokine;Proc. Nctl. Acad. Sci. USA 95 8916–8921

    CAS  Article  Google Scholar 

  • Mulvey M R and Loewen P C 1989 Nucleotide sequence ofkatF ofEscherichia coli suggestsKatF protein is a novel sigma transcription factor;Nucleic Acids Res. 17 9979–9991

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Munro P M, Flatau G N, Clement R L and Gauthier M J 1995 Influence of theRpoS (KatF) sigma factor on maintenance of viability and culturability ofEscherichia coli andSalmonella typhimurium in seawater;Appl. Environ. Microbiol. 61 1853–1858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy H S and Humayun M Z 1997Escherichia coli cells expressing a mutantglyV (glycine tRNA) gene have a UVM-constitutive phenotype: implications for mechanisms underlying themutA ormutC mutator effect;J. Bacteriol. 179 7507–7514

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Murphy H S, Palejwala V A, Rahman M S, Dunman P M, Wang G and Humayun M Z 1996 Role of mismatch repair in theEscherichia coli UVM response;J. Bacteriol. 178 6651–6657

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Nagel R, Chan A and Rosen E 1994Ruv andrecG genes and the induced precise excision of Tn10 inEscherichia coli;Mutat. Res. 311 103–109

    CAS  PubMed  Article  Google Scholar 

  • Notley L and Ferenci T 1996 Induction ofRpoS-dependent functions in glucose-limited continuous culture: what level of nutrient limitation induces the stationary phase ofEscherichia coli?;J. Bacteriol. 178 1465–1468

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Nwoguh C E, Harwood C R and Barer M R 1995 Detection of induced beta-galacotsidase activity in individual nonculturable cells of pathogenic bacteria by quantitative cytological assays;Mol. Micorbiol. 17 545–554

    CAS  Article  Google Scholar 

  • Nystrom T 1995 Glucose starvation stimulon ofEscherichia coli: role of integration host factor in starvation survival and growth phase-dependent protein synthesis;J. Bacteriol. 177 5707–5710

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Nystrom T and Gustavsson N 1998 Maintenance energy requirement: what is required for stasis survival ofEscherichia coli?;Biochim. Biophys. Acta 1365 225–231

    CAS  PubMed  Article  Google Scholar 

  • Obaseiki-Ebor E E and Smith K C 1992 Properties of R- plasmid pEB017, which confers both enhanced UV-radiation resistance and mutability to wild-type,recA andumuC strains ofEscherichia coli K12;Mutat. Res. 267 67–76

    CAS  PubMed  Article  Google Scholar 

  • Olsen A, Arnqvist A, Hammar M, Sukupolvi S and Normark S 1993 TheRpoS sigma factor relieves H-NS-mediated transcriptional repression ofcsgA, the subunit gene of fibronectin-binding curli inEscherichia coli;Mol. Microbiol. 7 523–536

    CAS  PubMed  Article  Google Scholar 

  • Palejwala V A, Pandya G A, Bhanot O S, Solomon J J, Murphy H S, Dunman P M and Humayun M Z 1994 UVM, an ultraviolet-inducibleRecA independent mutagenic phenomenon inEscherichia coli;J. Biol. Chem. 269 27433–27440

    CAS  PubMed  Google Scholar 

  • Palejwala V A, Wang G E, Murphy H S and Humayun M Z 1995 FunctionalrecA, lexA, umuD, umuC, polA, andpolB genes are not required for theEscherichia coli UVM response;J. Bacteriol. 177 6041–6048

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Pansegrau W and Lanka E 1996 Enzymology of DNA transfer by conjugative mechanisms;Prog. Nucleic Acid Res. Mol. Biol. 54 197–251

    CAS  PubMed  Article  Google Scholar 

  • Peters J E and Benson S A 1995 Redundant transfer of F′ plasmids occurs betweenEscherichia coli cells during non-lethal selections;J. Bacteriol. 177 847–850

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Peters J E, Bartoszyk I M, Dheer S and Benson S A 1996 Redundant homosexual F transfer facilitates selection-induced reversion of plasmid mutations;J. Bacteriol. 178 3037–3043

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Pommepuy M, Butin M, Derrien A, Gourmelon M, Colwel R R and Cormier M 1996 Retention of enteropathogenicity by viable but nonculturableEscherichia coli exposed to seawater and sunlight;Appl. Environ. Microbiol. 62 4621–4626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radicella J P, Park P U and Fox M S 1995 Adaptive mutation inEscherichia coli: a role for conjugation;Science 268 418–420

    CAS  PubMed  Article  Google Scholar 

  • Radman M, Matic I, Halliday J A and Taddei F 1995 Editing DNA replication and recombination by mismatch repair: from bacterial genetics to mechanisms of predisposition to cancer in humans;Philos. Trans. R. Soc. London B. Biol. Sci. 347 97–103

    CAS  PubMed  Article  Google Scholar 

  • Radnedge L and Pinney R J 1991 Ultraviolet light induction of lambda fromdcm host strains alleviates EcoRII restriction of phage;FEMS Microbiol. Lett. 63 121–125

    CAS  PubMed  Article  Google Scholar 

  • Relman D A and Falkow S 1992 Identification of uncultured microorganisms: expanding the spectrum of characterized microbial pathogens;Infect. Agents Dis. 1 2452–2453

    Google Scholar 

  • Ren L, Rahman M S and Humayun M Z 1999Escherichia coli cells exposed to streptomycin display a mutator phenotype;J. Bacteriol. 181 1043–1044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts D and Kleckner N 1988 Tn10 transposition promotes RecA-dependent induction of a lambda prophage;Proc. Natl. Acad. Sci. USA 85 6037–6041

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Rockabrand D, Livers K, Austin T, Kaiser R, Jensen D, Burgess R and Blum P 1998 Roles ofDnaK andRpoS in starvation- induced thermotolerance ofEscherichia coli;J. Bacteriol. 180 846–854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg S M 1997 Mutation for survival;Curr. Opin. Genet. Dev. 7 829–834

    CAS  PubMed  Article  Google Scholar 

  • Rosenberg S M, Harris R S and Torkelson J 1995 Molecular handles on adaptive mutation;Mol. Microbiol. 18 185–189

    CAS  PubMed  Article  Google Scholar 

  • Rosenberg S M, Longerich S, Gee P and Harris R S 1994 Adaptive mutation by deletions in small mononucleotide repeats;Science 265 405–407

    CAS  PubMed  Article  Google Scholar 

  • Rosenberg S M, Thulin C and Harris R S 1998 Transient and heritable mutators in adaptive evolution in the lab and in nature;Genetics 148 1559–1566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roszak D B and Colwell R R 1987 Survival strategies of bacteria in natural environments;Microbiol. Rev. 51 365–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosche W A, Foster P L and Cairns J 1999 The Role of transient hypermutators in adaptive mutation inEscherichia coli;Proc. Natl. Acad. Sci. USA 96 6862–6867

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Rusina O Yu, Mirskaya E E, Andreeva I V and Skavronskaya A G 1992 Precise excision of transposons and point mutations induced by chemicals;Mutat. Res. 283 161–168

    CAS  PubMed  Article  Google Scholar 

  • Salles B and Weinstock G M 1989 Interaction of the CRP- cAMP complex with thecea regulatory region;Mol. Gen. Genet. 215 537–542

    CAS  PubMed  Article  Google Scholar 

  • Schafer A, Kalinowski J and Puhler A 1994 Increased fertility ofCorynebacterium glutamicum recipients in intergeneric matings withEscherichia coli after stress exposure;Appl. Environ. Microbiol. 60 756–759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schafer A, Schwarzer A, Kalinowski J and Puhler A 1994 Cloning and eharacterization of a DNA region encoding a stress-sensitive restriction system fromCorynebacterium glutamicum ATCC 13032 and analysis of its role in intergeneric conjugation withEscherichia coli;J. Bacteriol. 176 7309–7319

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Schweder T, Lee K H, Lomovskaya O and Matin A 1996 Regulation ofEscherichia coli starvation sigma factor (sigma s) by ClpXP protease;J. Bacteriol. 178 470–476

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Shiba T, Tsutsumi K, Yano H, Ihara Y, Kameda A, Tanaka K, Takahashi H, Munekata M, Rao N N and Kornberg A 1997 Inorganic polyphosphate and the induction ofrpoS expression;Proc. Natl. Acad. Sci. USA 94 11210–11215

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Schuldiner S, Agmon V, Brandsma J, Cohen A, Friedman E and Padan E 1986 Induction of SOS functions by alkaline intracellular pH inEscherichia coli;J. Bacteriol. 168 936–939

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Schultz J E, Latter G I and Matin A 1988 Differential regulation by cyclic AMP of starvation protein synthesis inEscherichia coli;J. Bacteriol. 170 3903–3909

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sledjeski D, Gupta A and Gottesman S 1996 The small RNA DsrA, is essential for the low temperature expression during exponential growth ofE. coli;EMBO J. 15 3993–4000

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Slupska M M, Baikalov C, Lloyd R and Miller J H 1996 Mutator tRNAs are encoded by theEscherichia coli mutator genesmutA and mutC: a novel pathway for mutagenesis;Proc. Natl. Acad. Sci. USA 93 4380–4385

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Slupska M M, King A G, Lu L I, Lin R H, Mao E F, Lackey C A, Chiang J H, Baikalov C and Miller J H 1998 Examination of the role of DNA polymerase proofreading in the mutator effect of miscoding tRNAs;J. Bacteriol. 180 5712–5717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smarda J and Smajs D 1998 Colicins — exocellular lethal proteins ofEscherichia coli;Folia Microbiol. (Praha) 43 563–582

    CAS  Article  Google Scholar 

  • Smets B F, Rittmann B E and Stahl D A 1995 Quantification of the effect of substrate concentration on the conjugal transfer rate of the TOL plasmid in short-term batch mating experiments;Lett. Appl. Microbiol. 21 167–172

    CAS  PubMed  Article  Google Scholar 

  • Smith B T and Walker G C 1998 Mutagenesis and more:umuDC and theEscherichia coli SOS response;Genetics 148 1599–1610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sniegowski P D, Gerrish P J and Lenski R E 1997 Evolution of high mutation rates in experimental populations ofE. coli;Nature (London) 387 703–705

    CAS  Article  Google Scholar 

  • Sommer S, Bailone A and Devoret R 1985 SOS induction by thermosensitive replication mutants of miniF plasmid;Mol. Gen. Genet. 198 456–464

    CAS  PubMed  Article  Google Scholar 

  • Stambuk S and Radman M 1998 Mechanism and control of interspecies recombination inEscherichia coli. I. Mismatch repair, methylation, recombination and replication functions;Genetics 150 533–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stellwagen A E and Craig N L 1998 Mobile DNA elements: controlling transposition with ATP-dependent molecular switches;Trends Biochem. Sci. 23 486–490

    CAS  PubMed  Article  Google Scholar 

  • Taddei F, Matic I and Radman M 1995 cAMP-dependent SOS induction and mutagenesis in resting bacterial populations;Proc. Natl. Acad. Sci. USA 92 11736–11740

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Taddei F, Radman M, Maynard-Smith J, Toupance B, Gouyon P H and Godelle B 1997a Role of mutator alleles in adaptive evolution;Nature (London) 387 700–702

    CAS  Article  Google Scholar 

  • Taddei F, Matic I, Godelle B and Radman M 1997b To be a mutator, or how pathogenic and commensal bacteria can evolve rapidly;Trends Microbiol. 5 427–428

    CAS  PubMed  Article  Google Scholar 

  • Taddei F, Halliday J A, Matic I and Radman M 1997c Genetic analysis of mutagenesis in agingEscherichia coli colonies;Mol. Gen. Genet. 256 277–281

    CAS  PubMed  Article  Google Scholar 

  • Taddei F, Hayakawa H, Bouton M, Cirinesi A, Matic I, Sekiguchi M and Radman M 1997d Counteraction byMutT protein of transcriptional errors caused by oxidative damage;Science 278 128–130

    CAS  PubMed  Article  Google Scholar 

  • Taddei F, Vulic M, Radman M and Matic I 1997e Genetic variability and adaptation to stress;EXS 83 271–290

    CAS  PubMed  Google Scholar 

  • Takada A, Wachi M, Kaidow A, Takamura M and Nagai K 1997 DNA binding properties of thehfq gene productof Escherichia coli;Biochem. Biophys. Res. Commun. 236 576–579

    CAS  PubMed  Article  Google Scholar 

  • Teich A, Meyer S, Lin H Y, Andersson L, Enfors S and Neubauer P 1999 Growth rate related concentration changes of the starvation response regulators sigmaS and ppGpp in glucose-limited fed-batch and continuous cultures ofEscherichia coli;Biotechnol. Prog. 15 123–129

    CAS  PubMed  Article  Google Scholar 

  • Thorns B and Wackernagel W 1982 UV-induced allevation of lambda restriction inEscherichia coli K-12: kinetics of induction and specificity of this SOS function;Mol. Gen. Genet. 186 111–117

    Article  Google Scholar 

  • Thorns B and Wackernagel W 1983 Expression of ultraviolet- induced restriction alleviation inEscherichia coli K-12. Detection of a lambda phage fraction with a retarded mode of DNA injection;Biochim. Biophys. Acta 739 42–47

    Article  Google Scholar 

  • Thorns B and Wackernagel W 1984 Genetic control of damage- inducible restriction alleviation inEscherichia coli K12: an SOS function not repressed bylexA;Mol. Gen. Genet. 197 297–303

    Article  Google Scholar 

  • Torkelson J, Harris R S, Lombardo M-J, Nagendran J, Thulin C and Rosenberg S 1997 Genome wide hypermutation is a subpopulation of stationary phase cells underlies recombinantion-dependent adaptive mutation;EMBO J. 199716 3303–3311

    CAS  Google Scholar 

  • Torosian M V, Rabinkova E V, Shishkova O V, Naumova L A and Fradkin G E 1987 Phenomenon of restriction alleviation inEscherichia coli strains (Russ.);Mol. Gen. Mikrobiol. Virusol. 10 37–40

    Google Scholar 

  • Trobner W and Piechocki R 1984 Selection against hyper- mutability inEscherichia coli during long term evolution;Mol. Gen. Genet. 198 177–178

    CAS  PubMed  Article  Google Scholar 

  • Trobner W and Piechocki R 1985 Competition between thedam mutator and the isogenic wild-type ofEscherichia coli;Mutat. Res. 144 145–149

    CAS  PubMed  Article  Google Scholar 

  • Tsuchiya K, Okuno K, Ano T, Tanaka K, Takahashi H and Shoda M 1999 High magnetic field enhances stationary phase specific transcription activity ofEscherichia coli;Bioelectro- chem. Bioenerg. 48 383–387

    CAS  Article  Google Scholar 

  • Tsui H C, Feng G and Winkler M E 1997 Negative regulation ofmutS andmutH repair gene expression by theHfq andRpoS global regulators ofEscherichia coli K-12;J. Bacteriol. 179 7476–7487

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ueguchi C, Suzuki T, Yoshida T, Tanaka K and Mizuno T 1996 Systematic mutational analysis revealing the functional domain organization ofEscherichia coli nucleoid protein H-NS;J. Mol. Biol. 263 149–162

    CAS  PubMed  Article  Google Scholar 

  • Velkov V V 1996 Environmental genetic engineering: hope or hazard?;Curr. Sci. 70 823–832

    Google Scholar 

  • Vicente M, Kushner S R, Garrido T and Aldea M 1991 The role of the ‘gearbox’ in the transcription of essential genes;Mol. Microbiol. 5 2085–2091

    CAS  PubMed  Article  Google Scholar 

  • Volz K 1995 Structural and functional conservation in response regulators; inTwo-component signal transduction (eds) J A Hoch and T J Sihavy (Washington DC: ASM Press) pp 407–420

    Google Scholar 

  • Vulic M, Dionisio F, Taddei F and Radman M 1997 Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria;Proc. Natl. Acad. Sci. USA 94 9763–9767

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Wang G and Humayun M Z 1996 Induction of theEscherichia coli UVM response by oxidative stress;Mol. Gen. Genet. 251 573–579

    CAS  PubMed  Google Scholar 

  • Wang G, Palejwala V A, Dunman P M, Aviv D H, Murphy H S, Rahman M S and Humayun M Z 1995 Alkylating agents induce UVM, arecA independent inducible mutagenic phenomenon inEscherichia coli;Genetics 141 813–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wegrzyn G 1999 Replication of plasmids during bacterial response to amino acid starvation;Plasmid 41 11–16

    Article  Google Scholar 

  • Wise A, Brems R, Ramakrishnan V and Villarejo M 1996 Sequences in the -35 region ofEscherichia coli rpoS-dependent genes promote transcription by E sigma S;J. Bacterial. 178 2785–2793

    CAS  Article  Google Scholar 

  • Wolkow C A, DeBoy R T and Craig N L 1996 Conjugating plasmids are preferred targets for Tn7;Genes Dev. 10 2145–2157

    CAS  PubMed  Article  Google Scholar 

  • Worth L Jr, Clark S, Radman M and Modrich P 1994 Mismatch repair proteinsMutS andMutL inhibit RecA-catalyzed strand transfer between diverged DNAs;Proc. Natl. Acad. Sci. USA 91 3238–32341

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Wright B E 1996 The effect of the stringent response on mutation rates inEscherichia coli;Molec. Microbiol. 19 213–219

    CAS  Article  Google Scholar 

  • Wright B E and Minnick M F 1997 Reversion rates in a leuB auxotroph ofEscherichia coli K-12 correlate with ppGpp levels during exponential growth;Microbiology 143 847–854

    CAS  PubMed  Article  Google Scholar 

  • Wrobel B and Wegrzyn G 1997 Replication of plasmids derived from P1, F, R1, R6K and RK2 replicons in amino acid-starvedEscherichia coli stringent and relaxed strains;J. Basic Microbiol. 37 451–463

    CAS  PubMed  Article  Google Scholar 

  • Yamada M, Talukder A A and Nitta T 1999 Characterization of thessnA gene, which is involved in the decline of cell viability at the beginning of stationary phase inEscherichia coli;J. Bacteriol. 181 1838–1846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zavil’gel’skii G B, Manukhov I V and Rastorguev S M 1996 Attenuation of type I restriction inEscherichia coli: effect of the ard gene in UV-irradiated cells (Russ.);Genetika 32 1013–1016

    PubMed  Google Scholar 

  • Zhang A, Altuvia S, Tiwari A, Argaman L, Hengge-Aronis R and Storz G 1998 TheOxyS regulatory RNA represses rpoS translation and binds theHfq (HF-I) protein;EMBO J. 17 6061–6068

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zhou Y and Gottesman S 1998 Regulation of proteolysis of the stationary-phase sigma factorRpoS;J. Bacteriol. 180 1154–1158

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassili V. Velkov.

Additional information

This article is dedicated to the memory of Nikolai V Timofeev-Ressovsky (1900–1981).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Velkov, V.V. How environmental factors regulate mutagenesis and gene transfer in microorganisms. J. Biosci. 24, 529–559 (1999). https://doi.org/10.1007/BF02942664

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02942664

Keywords

  • Microorganisms
  • stationary phase
  • Sigma-S
  • general resistance
  • adaptive mutagenesis
  • inter-species gene transfer
  • speciation
  • evolution