Skip to main content
Log in

Molecular Mechanisms of Non-Inherited Antibiotic Tolerance in Bacteria and Archaea

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

The phenomenon of bacterial persistence, also known as non-inherited antibiotic tolerance in a part of bacterial populations, was described more than 70 years ago. This type of tolerance contributes to the chronization of infectious diseases, including tuberculosis. Currently, the emergence of persistent cells in bacterial populations is associated with the functioning of some stress-induced molecular triggers, including toxin–antitoxin systems. In the presented review, genetic and metabolic peculiarities of persistent cells are considered and the mechanisms of their occurrence are discussed. The hypothesis of the origin of persister cells based on bistability, arising due to the non-linear properties of a coupled transcription–translation system, was proposed. Within this hypothesis, the phenomenon of the bacterial persistence of modern cells is considered as a result of the genetic fixation of the phenotypic multiplicity that emerged in primitive cells in the process of neutrally coupled co-evolution (genetic drift of multiple neutrally coupled mutations). Our hypothesis explains the properties of persister cells, as well as their origin and “ineradicable” nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Dhar N., McKinney J.D. 2007. Microbial phenotypic heterogeneity and antibiotic tolerance. Curr. Opin. Microbiol. 10, 30–38.

    Article  CAS  PubMed  Google Scholar 

  2. Lewis K. 2007. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 5, 48–56.

    Article  CAS  PubMed  Google Scholar 

  3. Lewis K. 2008. Multidrug tolerance of biofilms and persister cells. Curr. Top. Microbiol. Immunol. 322, 107–131.

    CAS  PubMed  Google Scholar 

  4. Lewis K. 2012. Persister cells: Molecular mechanisms related to antibiotic tolerance. Handb. Exp. Pharmacol. 211, 121–133.

    Article  CAS  Google Scholar 

  5. Jayaraman R. 2008. Bacterial persistence: Some new insights into an old phenomenon. J. Biosci. 33, 795–805.

    Article  CAS  PubMed  Google Scholar 

  6. Kint C.I., Verstraeten N., Fauvart M., Michiels J. 2012. New-found fundamentals of bacterial persistence. Trends Microbiol. 20, 577–585.

    Article  CAS  PubMed  Google Scholar 

  7. Amato S.M., Fazen C.H., Henry T.C., Mok W.W., Orman M.A., Sandvik E.L., Volzing K.G., Brynildsen M.P. 2014. The role of metabolism in bacterial persistence. Front. Microbiol. 5, 70.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kester J.C., Fortune S.M. 2014. Persisters and beyond: Mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Crit. Rev. Biochem. Mol. Biol. 49, 91–101.

    Article  CAS  PubMed  Google Scholar 

  9. Gerdes K., Semsey S. 2016. Pumping persisters. Nature. 534, 41–42.

    Article  CAS  PubMed  Google Scholar 

  10. Conlon B.P., Rowe S.E., Gandt A.B., Nuxoll A.S., Donegan N.P., Zalis E.A., Clair G., Adkins J.N., Cheung A.L., Lewis K. 2016. Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat. Microbiol. 1, 16051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Defraine V., Fauvart M., Michiels J. 2018. Fighting bacterial persistence: Current and emerging anti-persister strategies and therapeutics. Drug Resist. Update. 38, 12–26.

    Article  Google Scholar 

  12. Wood T.K., Knabel S.J., Kwan B.W. 2013. Bacterial persister cell formation and dormancy. Appl. Environ. Microbiol. 79, 7116–7121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bigger J.W. 1944. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet. 244, 497–500.

    Article  Google Scholar 

  14. Lederberg J., Lederberg E.M. 1952. Replica plating and indirect selection of bacterial mutants. J. Bacteriol. 63, 399–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Moyed H.S., Bertrand K.P. 1983. hipA, a newly recognized gene of Escherichia coli K12 that affects the frequency of persisters after inhibition of murein synthesis. J. Bacteriol. 155, 768–775.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Balaban N.Q., Merrin J., Chait R., Kowalik L., Leibler S. 2004. Bacterial persistence as a phenotypic switch. Science. 305, 1622–1625.

    Article  CAS  PubMed  Google Scholar 

  17. Keren I., Shah D., Spoering A., Kaldalu N., Lewis K. 2004. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186, 8172–8180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shah D., Zhang Z., Khodursky A., Kaldalu N., Kurg K., Lewis K. 2006. Persisters: A distinct physiological state of E. coli. BMC Microbiol. 6, 53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Radzikowski J.L., Vedelaar S., Siegel D., Ortega Á.D., Schmidt A., Heinemann M. 2016. Bacterial persistence is an active σS stress response to metabolic flux limitation. Mol. Syst. Biol. 12, 882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nguyen D., Joshi-Datar A., Lepine F., Bauerle E., Olakanmi O., Beer K., McKay G., Siehnel R., Schafhauser J., Wang Y., Britigan B.E., Singh P.K. 2011. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science. 334, 982–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grant S.S., Hung D.T. 2013. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence. 4, 273–283.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Grant S.S., Kaufmann B.B., Chand N.S., Haseley N., Hung D.T. 2012. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proc. Natl. Acad. Sci. U. S. A. 109, 12147–12152.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shapiro J.A., Nguyen V.L., Chamberlain N.R. 2011. Evidence for persisters in Staphylococcus epidermidis RP62a planktonic cultures and biofilms. J. Med. Microbiol. 60, 950–960.

    Article  CAS  PubMed  Google Scholar 

  24. Bernier S.P., Lebeaux D., DeFrancesco A.S., Valomon A., Soubigou G., Coppée J.Y., Ghigo J.M., Beloin C. 2013. Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet. 9, e1003144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Verstraeten N., Knapen W.J., Kint C.I., Liebens V., Van den Bergh B., Dewachter L., Michiels J.E., Fu Q., David C.C., Fierro A.C., Marchal K., Beirlant J., Versqes W., Hofkens J., Jansen M., et al. 2015. Obg and membrane depolarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance. Mol. Cell. 59, 9–21.

    Article  CAS  PubMed  Google Scholar 

  26. Grassi L., Di Luca M., Maisetta G., Rinaldi A.C., Esin S., Trampuz A., Batoni G. 2017. Generation of persister cells of Pseudomonas aeruginosa and Staphylococcus aureus by chemical treatment and evaluation of their susceptibility to membrane-targeting agents. Front. Microbiol. 8, 1917.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Megaw J., Gilmore B.F. 2017. Archaeal persisters: Persister cell formation as a stress response in Haloferax volcanii. Front. Microbiol. 8, 1589.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ferrell J.E. Jr. 2002. Self-perpetuating states in signal transduction: Positive feedback, double-negative feedback and bistability. Curr. Opin. Cell. Biol. 14, 140–148.

    Article  CAS  PubMed  Google Scholar 

  29. Angeli D., Ferrell J.E. Jr., Sontag E.D. 2004. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. U. S. A. 101, 1822–1827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ozbudak E.M., Thattai M., Lim H.N., Shraiman B.I., Van Oudenaarden A. 2004. Multistability in the lactose utilization network of Escherichia coli. Nature. 427, 737–740.

    Article  CAS  PubMed  Google Scholar 

  31. Smits W.K., Kuipers O.P., Veening J.W. 2006. Phenotypic variation in bacteria: The role of feedback regulation. Nat. Rev. Microbiol. 4, 259–271.

    Article  CAS  PubMed  Google Scholar 

  32. Dubnau D., Losick R. 2006. Bistability in bacteria. Mol. Microbiol. 61, 564–572.

    Article  CAS  PubMed  Google Scholar 

  33. Piggot P. 2010. Epigenetic switching: Bacteria hedge bets about staying or moving. Curr. Biol. 20, R480–R482.

    Article  CAS  PubMed  Google Scholar 

  34. Avendaño M.S., Leidy C., Pedraza J.M. 2013. Tuning the range and stability of multiple phenotypic states with coupled positive-negative feedback loops. Nat. Commun. 4, 2605.

    Article  CAS  PubMed  Google Scholar 

  35. Kaern M., Elston T.C., Blake W.J., Collins J.J. 2005. Stochasticity in gene expression: From theories to phenotypes. Nat. Rev. Genet. 6, 451–464.

    Article  CAS  PubMed  Google Scholar 

  36. Sureka K., Ghosh B., Dasgupta A., Basu J., Kundu M., Bose I. 2008. Positive feedback and noise activate the stringent response regulator rel in mycobacteria. PLoS One. 3, e1771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. To T.L., Maheshri N. 2010. Noise can induce bimodality in positive transcriptional feedback loops without bistability. Science. 327, 1142–1145.

    Article  CAS  PubMed  Google Scholar 

  38. Zheng X.D., Yang X.Q., Tao Y. 2011. Bistability, probability transition rate and first-passage time in an autoactivating positive-feedback loop. PLoS One. 6, e17104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shu C.C., Chatterjee A., Dunny G., Hu W.S., Ramkrishna D. 2011. Bistability versus bimodal distributions in gene regulatory processes from population balance. PLoS Comput. Biol. 7, e1002140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ghosh S., Banerjee S., Bose I. 2012. Emergent bistability: Effects of additive and multiplicative noise. Eur. Phys. J. E. Soft. Matter. 35, 11.

    Article  CAS  PubMed  Google Scholar 

  41. Thomas P., Popović N., Grima R. 2014. Phenotypic switching in gene regulatory networks. Proc. Natl. Acad. Sci. U. S. A. 111, 6994–6999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dörr T., Vulić M., Lewis K. 2010. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 8, e1000317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tripathi A., Dewan P.C., Siddique S.A., Varadarajan R. 2014. MazF-induced growth inhibition and persister generation in Escherichia coli. J. Biol. Chem. 289, 4191–4205.

    Article  CAS  PubMed  Google Scholar 

  44. Schumacher M.A., Balani P., Min J., Chinnam N.B., Hansen S., Vulić M., Lewis K., Brennan R.G. 2015. HipBA-promoter structures reveal the basis of heritable multidrug tolerance. Nature. 524 (7563), 59–64.

    Article  CAS  PubMed  Google Scholar 

  45. Gerdes K., Christensen S.K., Løbner-Olesen A. 2005. Prokaryotic toxin-antitoxin stress response loci. Nat. Rev. Microbiol. 3, 371–382.

    Article  CAS  PubMed  Google Scholar 

  46. Otsuka Y. 2016. Prokaryotic toxin-antitoxin systems: Novel regulations of the toxins. Curr. Genet. 62, 379–382.

    Article  CAS  PubMed  Google Scholar 

  47. Soo V.W., Cheng H.Y., Kwan B.W., Wood T.K. 2014. De novo synthesis of a bacterial toxin/antitoxin system. Sci. Rep. 4, 4807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lou C., Li Z., Ouyang Q. 2008. A molecular model for persister in E. coli. J. Theor. Biol. 255, 205–209.

    Article  CAS  PubMed  Google Scholar 

  49. Koh R.S., Dunlop M.J. 2012. Modeling suggests that gene circuit architecture controls phenotypic variability in a bacterial persistence network. BMC Syst. Biol. 6, 47.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Feng J., Kessler D.A., Ben-Jacob E., Levine H. 2014. Growth feedback as a basis for persister bistability. Proc. Natl. Acad. Sci. U. S. A. 111, 544–549.

    Article  CAS  PubMed  Google Scholar 

  51. Fasani R.A., Savageau M.A. 2013. Molecular mechanisms of multiple toxin-antitoxin systems are coordinated to govern the persister phenotype. Proc. Natl. Acad. Sci. U. S. A. 110, E2528–E2537.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gelens L., Hill L., Vandervelde A., Danckaert J., Loris R. 2013. A general model for toxin–antitoxin module dynamics can explain persister cell formation in E. coli. PLoS Comput. Biol. 9, e1003190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Unterholzner S.J., Poppenberger B., Rozhon W. 2013. Toxin–antitoxin systems: Biology, identification, and application. Mob. Genet. Elements. 3, e26219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gupta K., Tripathi A., Sahu A., Varadarajan R. 2017. Contribution of the chromosomal ccdAB operon to bacterial drug tolerance. J. Bacteriol. 199, e00397-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gurnev P.A., Ortenberg R., Dörr T., Lewis K., Bezrukov S.M. 2012. Persister promoting bacterial toxin TisB produces anion-selective pores in planar lipid bilayers. FEBS Lett. 586, 2529–2534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim Y., Wood T.K. 2010. Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochem. Biophys. Res. Commun. 391, 209–213.

    Article  CAS  PubMed  Google Scholar 

  57. Maisonneuve E., Castro-Camargo M., Gerdes K. 2013. (p)ppGpp controls bacterial persistence by stochastic induction of toxin–antitoxin activity. Cell. 154, 1140–1150.

    Article  CAS  PubMed  Google Scholar 

  58. Wu Y., Vulić M., Keren I., Lewis K. 2012. Role of oxidative stress in persister tolerance. Antimicrob. Agents Chemother. 56, 4922–4926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Molina-Quiroz R.C., Silva-Valenzuela C., Brewster J., Castro-Nallar E., Levy S.B., Camilli A. 2018. Cyclic AMP regulates bacterial persistence through repression of the oxidative stress response and SOS-dependent DNA repair in uropathogenic Escherichia coli. MBio. 9, e02144-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Amato S.M., Brynildsen M.P. 2015. Persister heterogeneity arising from a single metabolic stress. Curr. Biol. 25, 2090–2098.

    Article  CAS  PubMed  Google Scholar 

  61. Amato S.M., Orman M.A., Brynildsen M.P. 2013. Metabolic control of persister formation in Escherichia coli. Mol. Cell. 50, 475–487.

    Article  CAS  PubMed  Google Scholar 

  62. Kotte O., Volkmer B., Radzikowski J.L., Heinemann M. 2014. Phenotypic bistability in Escherichia coli’s central carbon metabolism. Mol. Syst. Biol. 10, 736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Namugenyi S.B., Aagesen A.M., Elliott S.R., Tischler A.D. 2017. Mycobacterium tuberculosis PhoY proteins promote persister formation by mediating Pst/SenX3-RegX3 phosphate sensing. MBio. 8, e00494-17.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shan Y., Brown Gandt A., Rowe S.E., Deisinger J.P., Conlon B.P., Lewis K. 2017. ATP-dependent persister formation in Escherichia coli. MBio. 8, e02267-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cameron D.R., Shan Y., Zalis E.A., Isabella V., Lewis K. 2018. A genetic determinant of persister cell formation in bacterial pathogens. J. Bacteriol. 200, e00303-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ghosh S., Sureka K., Ghosh B., Bose I., Basu J., Kundu M. 2011. Phenotypic heterogeneity in mycobacterial stringent response. BMC Syst. Biol. 5, 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li Y., Zhang Y. 2007. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob. Agents Chemother. 51, 2092–2099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shi W., Zhang Y. 2010. PhoY2 but not PhoY1 is the PhoU homologue involved in persisters in Mycobacterium tuberculosis. J. Antimicrob. Chemother. 65, 1237–1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma C., Sim S., Shi W., Du L., Xing D., Zhang Y. 2010. Energy production genes sucB and ubiF are involved in persister survival and tolerance to multiple antibiotics and stresses in Escherichia coli. FEMS Microbiol. Lett. 303, 33–40.

    Article  CAS  PubMed  Google Scholar 

  70. Torrey H.L., Keren I., Via L.E., Lee J.S., Lewis K. 2016. High persister mutants in Mycobacterium tuberculosis. PLoS One. 11, e0155127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim J.S., Cho D.H., Heo P., Jung S.C., Park M., Oh E.J., Sung J., Kim P.J., Lee S.C., Lee D.H., Lee S., Lee C.H., Shin D., Jin Y.S., Kweon D.H. 2016. Fumarate-mediated persistence of Escherichia coli against antibiotics. Antimicrob. Agents Chemother. 60, 2232–2240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cui P., Niu H., Shi W., Zhang S., Zhang W., Zhang Y. 2018. Identification of genes involved in bacteriostatic antibiotic-induced persister formation. Front. Microbiol. 9, 413.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang Y., Bojer M.S., George S.E., Wang Z., Jensen P.R., Wolz C., Ingmer H. 2018. Inactivation of TCA cycle enhances Staphylococcus aureus persister cell formation in stationary phase. Sci. Rep. 8, 10849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hansen S., Lewis K., Vulic M. 2008. Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob. Agents Chemother. 52, 2718–2726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hofsteenge N., van Nimwegen E., Silander O.K. 2013. Quantitative analysis of persister fractions suggests different mechanisms of formation among environmental isolates of E. coli. BMC Microbiol. 13, 25.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kwan B.W., Valenta J.A., Benedik M.J., Wood T.K. 2013. Arrested protein synthesis increases persister-like cell formation. Antimicrob. Agents Chemother. 57, 1468–1473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Likhoshvai V.A., Kogai V.V., Fadeev S.I., Khlebodarova T.M. 2016. Chaos and hyperchaos in a model of ribosome autocatalytic synthesis. Sci. Rep. 6, 38870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Day T. 2016. Interpreting phenotypic antibiotic tolerance and persister cells as evolution via epigenetic inheritance. Mol. Ecol. 25, 1869–1882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Likhoshvai V.A., Khlebodarova T.M. 2016. Phenotypic multiplicity of the bacterial cell cycle: A mathematical model. Mat. Biol. Bioinform. 11, 91–113.

    Article  CAS  Google Scholar 

  80. Schaechter M., Maaloe O., Kjeldgaard N.O. 1958. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J. Gen. Microbiol. 19, 592–606.

    Article  CAS  PubMed  Google Scholar 

  81. Khlebodarova T.M., Likhoshvai V.A. 2016. Phenotypic multiplicity of the cell cycle: A consequence of unique properties of the coupled transcription–translation system. In: Matematicheskaya biologiya i bioinformatika (Mathematical Biology and Bioinformatics), vol. 6. Ed. Lakhno V.D. Moscow: MAKS Press, pp. 98–99.

  82. Khlebodarova T.M., Likhoshvai V.A. 2018. Persister cells – a plausible outcome of neutral coevolutionary drift. Sci. Rep. 8, 14309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kimura M. 1968. Evolutionary rate at the molecular level. Nature. 217, 624–626.

    Article  CAS  PubMed  Google Scholar 

  84. Kimura M. 1991. The neutral theory of molecular evolution: A review of recent evidence. Jpn. J. Genet. 66, 367–386.

    Article  CAS  PubMed  Google Scholar 

  85. King J.L., Jukes T.H. 1969. Non-Darwinian evolution. Science. 164, 788–798.

    Article  CAS  PubMed  Google Scholar 

  86. Ohta T. 2002. Near-neutrality in evolution of genes and gene regulation. Proc. Natl. Acad. Sci. U. S. A. 99, 16134–16137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ohta T. 1973. Slightly deleterious mutant substitutions in evolution. Nature. 246, 96–98.

    Article  CAS  PubMed  Google Scholar 

  88. Koonin E.V. 2016. Splendor and misery of adaptation, or the importance of neutral null for understanding evolution. BMC Biol. 14, 114.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Volkenstein M.V. 1985. Biopolymers and evolution. Mol. Biol. (Moscow). 19, 55–66.

    Google Scholar 

  90. Volkenstein M.V., Goldstein B.N. 1986. Enzymatic mechanisms for compensating deleterious mutations. Mol. Biol. (Moscow). 20, 1645–1654.

    Google Scholar 

  91. Michaelis L., Menten M.L. 1913. Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333–369.

    CAS  Google Scholar 

  92. Michaelis L., Menten M.M. 2013. The kinetics of invertin action. 1913. FEBS Lett. 587, 2712–2720.

    Article  CAS  PubMed  Google Scholar 

  93. Schmalhausen I.I. 1968. Faktory evolyutsii: teoriya stabiliziruyushchego otbora (Factors of Evolution: The Theory of Stabilizing Selection). Eds. Berg R.L., Makhotin A.A., Yablokov A.V., Moscow: Nauka.

    Google Scholar 

  94. Kimura M. 1985. The role of compensatory neutral mutations in molecular evolution. J. Genet. 64, 7–19.

    Article  CAS  Google Scholar 

  95. Belinky F., Rogozin I.B., Koonin, E.V. 2017. Selection on start codons in prokaryotes and potential compensatory nucleotide substitutions. Sci. Rep. 7, 12422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Frenkel-Morgenstern M., Tworowski D., Klipcan L., Safro M. 2009. Intra-protein compensatory mutations analysis highlights the tRNA recognition regions in aminoacyl-tRNA synthetases. J. Biomol. Struct. Dyn. 27, 115–126.

    Article  CAS  PubMed  Google Scholar 

  97. DiNardo S., Voelkel K.A., Sternglanz R., Reynolds A.E., Wright A. 1982. Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell. 31, 43–51.

    Article  CAS  PubMed  Google Scholar 

  98. Pruss G.J., Manes S.H., Drlica K. 1982. Escherichia coli DNA topoisomerase I mutants: Increased supercoiling is corrected by mutations near gyrase genes. Cell. 31, 35–42.

    Article  CAS  PubMed  Google Scholar 

  99. Raji A., Zabel D.J., Laufer C.S., Depew R.E. 1985. Genetic analysis of mutations that compensate for loss of Escherichia coli DNA topoisomerase I. J. Bacteriol. 162, 1173–1179.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Mao Y., Li Q., Zhang Y., Zhang J., Wei G., Tao S. 2013. Genome-wide analysis of selective constraints on high stability regions of mRNA reveals multiple compensatory mutations in Escherichia coli. PLoS One. 8, e73299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Likhoshvai V.A., Khlebodarova T.M. 2018. One genotype → two phenotypes: “Neutrally coupled coevolution” and origin of persister cells. In: Matematicheskaya biologiya i bioinformatika (Mathematical Biology and Bioinformatics), vol. 7. Ed. Lakhno V.D. Pushchino: IMBP RAN, e67.

  102. Likhoshvai V.A., Matushkin Yu.G. 2004. Sporadic emergence of latent phenotype during evolution. In: Bioinformatics of Genome Regulation and Structure. Eds. Kolchanov N., Hofestaedt R. Boston: Kluwer, pp. 231–243.

    Google Scholar 

  103. Germain E., Roghanian M., Gerdes K., Maisonneuve E. 2015. Stochastic induction of persister cells by HipA through (p)ppGpp-mediated activation of mRNA endonucleases. Proc. Natl. Acad. Sci. U. S. A. 112, 5171–5176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Klapper I., Gilbert P., Ayati B.P., Dockery J., Ste-wart P.S. 2007. Senescence can explain microbial persistence. Microbiology. 153, 3623–3630.

    Article  CAS  PubMed  Google Scholar 

  105. Shearwin K. 2009. Slow growth leads to a switch. Nat. Chem. Biol. 5, 784–785.

    Article  CAS  PubMed  Google Scholar 

  106. Haney P.J., Badger J.H., Buldak G.L., Reich C.I., Woese C.R., Olsen G.J. 1999. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc. Natl. Acad. Sci. U. S. A. 96, 3578–3583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Makarova K.S., Omelchenko M.V., Gaidamakova E.K., Matrosova V.Y, Vasilenko A., Zhai M., Lapidus A., Copeland A., Kim E., Land M., Mavrommatis K., Pitluck S., Richardson P.M., Detter C., Brettin T., et al. 2007. Deinococcus geothermalis: The pool of extreme radiation resistance genes shrinks. PLoS One. 2, e955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Omelchenko M.V., Wolf Y.I., Gaidamakova E.K., Matrosova V.Y., Vasilenko A., Zhai M., Daly M.J., Koonin E.V., Makarova K.S. 2005. Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: Divergent routes of adaptation to thermophily and radiation resistance. BMC Evol. Biol. 5, 57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kunin E.V. (2014) Logika sluchaya. O prirode i proiskhozhdenii biologicheskoi evolyutsii (The Logic of Occurrence. On the Nature and Origin of Biological Evolution). Moscow: Tsentrpoligraf.

  110. Bernander R., Poplawski A. 1997. Cell cycle characteristics of thermophilic archaea. J. Bacteriol. 179, 4963–4969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tan I.S., Ramamurthi K.S. 2014. Spore formation in Bacillus subtilis. Environ. Microbiol. Rep. 6, 212–225.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Program of Fundamental Studies of the Siberian Branch, Russian Academy of Sciences (project no. 0324-2019-0040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Khlebodarova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlebodarova, T.M., Likhoshvai, V.A. Molecular Mechanisms of Non-Inherited Antibiotic Tolerance in Bacteria and Archaea. Mol Biol 53, 475–483 (2019). https://doi.org/10.1134/S0026893319040058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319040058

Keywords:

Navigation