Skip to main content
Log in

High level expression of soybean trypsin inhibitor gene in transgenic tobacco plants failed to confer resistance against damage caused byHelicoverpa armigera

  • Articles
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Helicoverpa armigera is a major pest of many tropical crop plants. Soybean trypsin inhibitor (SBTI) was highly effective against the proteolytic activity of gut extract of the insect. SBTI was also inhibitory to insect growth when present in artificial diet. The gene coding for SBTI was cloned from soybean (Glycine max, CVBirsa) and transferred to tobacco plants for constitutive expression. Young larvae ofH. armigera, fed on the leaves of the transgenic tobacco plants expressing high level of SBTI, however, maintained normal growth and development. The results suggest that in certain cases the trypsin inhibitor gene(s) may not be suitable candidates for developing insect resistant transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birk Y 1961 Purification and some properties of a highly active inhibitor of trypsin and α-chymotrypsin from soybean;Biochem. Biophys. Acta 54 378–380

    Article  CAS  Google Scholar 

  • Bradford M M 1976 A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of dye binding;Anal. Biochem. 72 248–254

    Article  CAS  Google Scholar 

  • Broadway R M and Duffey S 1986 Plant protease inhibitors: Mechanism of action and effect on the growth and digestive physiology of larvalHelicoverpa zea andSpodoptera exiqua;J. Insect Physlol. 32 827–833

    Article  CAS  Google Scholar 

  • Duan X, Li X, Xue Q, Abo-el-Saad M, Xu D and Wu R 1996 Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant;Nature Biotechnol. 14 494–498

    Article  CAS  Google Scholar 

  • Gatehouse A M R, Gatehouse J A and Boulter D 1980 Isolation and characterization of trypsin inhibitor from cowpea (Vigna unguiculata);Phytochemistry 19 751–756

    Article  CAS  Google Scholar 

  • Gennis L S and Cantor C R 1976 Double headed protease inhibitors from black eyed peas III: subunit interaction of the native and half site chemically modified proteins;J. Biol. Chem. 251 747–753

    CAS  PubMed  Google Scholar 

  • Green T and Ryan C A 1972 Wound induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects;Science 175 776–777

    Article  CAS  Google Scholar 

  • Hilder V A, Gatehouse A M R, Sheerman S E, Barker R F and Boulter D 1986 A novel mechanism of insect resistance engineered into tobacco;Nature (London) 330 160–163

    Article  Google Scholar 

  • Hofgen R and Willmitzer L 1988 Storage of competent cell forAgrobacterium transformation;Nucleic Acids Res. 16 9877

    Article  CAS  Google Scholar 

  • Horsch R B, Fry J, Hoffman N L, Wallroth M, Echholtz D, Rogers S G and Fraley R T 1985 A simple and general method for transferring genes into plants;Science 227 1229–1231

    Article  CAS  Google Scholar 

  • Irie K, Hosoyama H, Takeuchi T, Iwabuchi K, Watanabe H, Abe M, Abe K and Arai S 1996 Transgenic rice established to express corn cystatin exhibits strong inhibitory against insect gut protease;Plant Mol. Biol. 30 149–157

    Article  CAS  Google Scholar 

  • Jefferson R A, Kavanagh T A and Bevan M W 1987 Gus fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants;EMBO J. 6 3901–3907

    Article  CAS  Google Scholar 

  • Jofuku K D and Goldberg R B 1989 Kunitz trypsin inhibitor gene are differentially expressed during the soybean life cycle and in transformed tobacco plants;Plant Cell 1 1079–1093

    Article  CAS  Google Scholar 

  • Jofuku K D, Schipper R D and Goldberg R B 1989 A frameshift mutation prevents Kunitz trypsin inhibitor mRNA accumulation in soybean embryos;Plant Cell 1 427–435

    Article  CAS  Google Scholar 

  • Johnson R, Narvaez J, An G and Ryan C 1989 Expression of proteinase inhibitors I and II in transgenic tobacco plant: effects on natural defense againstManduca sexta larvae;Proc. Natl. Acad. Sci. USA 86 9871–9875

    Article  CAS  Google Scholar 

  • Johnston K A, Gatehouse J A and Anstee J H 1991In vitro andin vivo studies of the effects of plant proteinase inhibitors onHelicoverpa armigera larvae;J. Exp. Bot. 42 238

    Google Scholar 

  • Jongsma M A, Bakker P L, Peters J, Bosch D and Stiekema W 1995 Adaptation ofSpodoptera exiqua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition;Proc. Natl. Acad. Sci. USA 92 8041–8045

    Article  CAS  Google Scholar 

  • Jotwani M G and Butani D K 1984 Insect pest of crops; inHandbook of agriculture (eds) P L Jaiswal and A M Wadhwani (New Delhi: ICAR) pp 417–550

    Google Scholar 

  • Kay E 1976 Origin of circular dichroism bands in Bowman-Birk soybean trypsin inhibitor;J. Biol. Chem. 251 3411–3416

    CAS  PubMed  Google Scholar 

  • Kim S H, Hara S, Hase S, Ikenaka T, Toda H, Kitamura K and Kaizuma N 1985 Comparative study on amino acid sequences of Kunitz type soybean trypsin inhibitors, Tia, Tib and Tic;J. Biochem. 98 435–448

    Article  CAS  Google Scholar 

  • Kunitz M 1947 Isolation of a crystalline protein compound of trypsin and soybean trypsin inhibitor;J. Gen. Physiol. 30 311–320

    Article  CAS  Google Scholar 

  • Laemmli U K 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4;Nature (London) 227 680–685

    Article  CAS  Google Scholar 

  • Laskowski M and Sealock R W 1978The Enzymes vol 3 (New York: Academic Press)

    Google Scholar 

  • Lee S L, Lee S-Ho, Koo J C, Chun H J, Lim C O, Mun H J and Song Y H 1999 Soybean kunitz trypsin inhibitor confers resistance to the brown plant hopper in transgenic rice;Mol. Breeding 5 1–9

    Article  Google Scholar 

  • Malehorn D E, Borgmeyer J R, Smith C E and Shah D M 1994 Characterization and expression of an anti fungal zeamatin like protein fromZea mays;Plant Physiol. 106 1471–1481

    Article  CAS  Google Scholar 

  • Murashige T and Skoog F 1962 A revised medium for rapid growth and bio-assays with tobacco tissue cultures;Physiol. Plant 15 473–497

    Article  CAS  Google Scholar 

  • Purcell J P, Greenplate J T and Sammons R D 1992 Examination of midgut luminal proteinase activities in six economically important insects;Insect Biochem. Mol. Biol. 22 41–47

    Article  CAS  Google Scholar 

  • Pusztai A, Grant G, Brown D J, Stewart J C, Bardocz S, Ewen S W, Gatehouse A M and Hilder V 1992 Nutritional evaluation of the trypsin (EC 3.4.21.4) inhibitor from cowpea (Vigna unguiculata Walp.);Br. J. Nutr. 68 783–791

    Article  CAS  Google Scholar 

  • Rogers S O and Benedich A J 1988 Extraction of DNA from plant tissues; inPlant molecular biology (eds) S B Gelvin, R A Schilperoort and D P S Verma (Netherlands: Kluwer Academic Publishers) pp A6: 1–10

    Google Scholar 

  • Sambrook J, Fritsch E F and Maniatis T 1989Molecular cloning; A laboratory manual 2nd edition (New York: Cold Spring Harbor Laboratory)

    Google Scholar 

  • Sanger F, Nicklen S and Coulson A R 1977 DNA sequencing with chain terminator inhibitors;Proc. Natl. Acad. Sci. USA 74 5463–5466

    Article  CAS  Google Scholar 

  • Schuler T H, Poppy G M, Kerry B R and Denholm I 1998 Insect resistant transgenic plants;Trend. Biotech. 16 168–175

    Article  CAS  Google Scholar 

  • Shagger H and Jagow G V 1987 Tricine sodium dodecyl sulphate polyacrylamide gel electrophoresis for the separation of proteins in range from 1 to 100 kDa;Anal. Biochem. 166 368–379

    Article  Google Scholar 

  • Spies R J 1957 Colorimetric procedures for aminoacids;Methods Enzymol. 3 467–477

    Article  Google Scholar 

  • Sogawa K 1970 Studies on feeding habits of the brown plant hopper I. Effects of nitrogen deficiency of host plant insect feeding;Jpn. J. Appl. Entomol. Zool. 14 101–106

    Article  Google Scholar 

  • Southern E M 1975 Detection of specific sequences among DNA fragments separated by gel electrophoresis;J. Mol. Biol. 96 503

    Article  Google Scholar 

  • Towbin H, Staehelin T and Goedon J 1979 Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets;Proc. Natl. Acad. Sci. USA 76 4350–4354

    Article  CAS  Google Scholar 

  • Wei C H 1983 Crystalization of two cubic forms of soybean trypsin inhibitor E-1, a member of Bowman-Birk family;J. Biol. Chem. 258 9357–9359

    CAS  PubMed  Google Scholar 

  • Wu Y, Llewellyn D, Mathews A and Dennis E S 1997 Adaptation ofHelicoverpa armigera to a proteinase inhibitor expressed in transgenic tobacco;Mol. Breeding 3 371–380

    Article  CAS  Google Scholar 

  • Xu D, Xue Q, McElroy D, Mawal Y, Hilder V A and Wu R 1996 Constitutive expression of cowpea trypsin inhibitor gene CPTI in transgenic rice plants confer resistance to two major rice insect pests;Mol. Breeding 2 167–173

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumitra K. Sen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandi, A.K., Basu, D., Das, S. et al. High level expression of soybean trypsin inhibitor gene in transgenic tobacco plants failed to confer resistance against damage caused byHelicoverpa armigera . J. Biosci. 24, 445–452 (1999). https://doi.org/10.1007/BF02942655

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02942655

Keywords

Navigation