Skip to main content
Log in

Production of cellulase systems by selected mutants ofTrichoderma reesei in solid-state fermentation and their hydrolytic potentials

  • Session 3 Bioprocessing Research
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Three mutants ofTrichoderma reesei were grown in solid-state fermentation (SSF) in flasks and in a pan bioreactor. Mutant strain MCG 80 proved to be best at producing an optimal cellulase system using lignocellulosic material (wheat straw [WS]) as substrate. This preparation exhibited a β-glucosidase activity (βGA) to FPA (FPA) ratio of about 1.0, which is indicative of a high potential for hydrolysis of cellulose. The yields of cellulase systems and the ratio of βGA to FPA produced in flasks were comparable to that of the pan bioreactor. The cellulase system ofT. reesei MCG 80 having a ratio of βGA to FPA close to 1.0 gave the most complete (88–95%) hydrolysis of 5% delignified wheat straw (DWS). On the other hand, the cellulase system of cocultures ofT. reesei QMY-1 andAspergillus phoenicis failed to produce high hydrolytic yields in spite of having a very high ratio of βGA to FPA (3.04). This failure was owing to the fact that coculture contained the relatively poor-quality cellulase system of the dominant organism,A. phoenicis. The resulting fermented WS can be used, as a source of enzyme (unextracted), for hydrolysis of wheat straw, and it gives increased yields of reducing sugars compared to analogous extracted enzyme preparations. The hydrolytic potential of two commercial enzymes tested were considerably lower than those of the cellulase systems produced on WS. It is evident that a complete cellulase system having a βGA-to-FPA ratio close to 1.0 and high hydrolytic potential can be produced on lignocellulosic feedstocks in SSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chahal, D. S. (1985),Appl. Environ. Microbiol. 49, 205–210.

    CAS  Google Scholar 

  2. Chahal, D. S. (1991),ACS Symposium Series 460, 111–122.

    CAS  Google Scholar 

  3. Hesseltine, C. W. (1972),Biotechnol. Bioeng. 14, 517–532.

    Article  CAS  Google Scholar 

  4. Mudgett, R. E. (1986), inManual of Industrial Microbiology and Biotechnology, Demain, A. L. and Solomon, N. A., eds., ASM, Washington, DC, pp. 66–83.

    Google Scholar 

  5. Saddler, J. N. (1986),Microbiol. Sci. 3, 84–87.

    CAS  Google Scholar 

  6. Gomes, J., Esterbauer, H., Gomes, I., and Steiner, W. (1989).Lett. Appl. Microbiol. 8, 67–70.

    Article  Google Scholar 

  7. Stockton, B. C., Mitchell, D. J., Grohmann, K., and Himmel, M. E. (1991),Biotech. Lett. 13, 57–62.

    Article  CAS  Google Scholar 

  8. Chahal, D. S., McGuire, S., Pikor, H., and Noble, G. (1982),Biomass 2, 127–138.

    Article  CAS  Google Scholar 

  9. Klyosov, A. A. (1980), inBiochemistry and Genetics of Cellulose Degradation, Aubert, J. P., Beguin, P., and Millet, J., eds., Academic, NY, pp. 87–99.

    Google Scholar 

  10. Esterbauer, H., Steiner, W., Labudova, I., Hermann, A., and Hayn, M. (1991),Bioresource Technol. 36, 51–65.

    Article  CAS  Google Scholar 

  11. Panda, T., Bisaria, V. S., and Ghose, T. K. (1983),Biotech. Lett. 5(11), 767–772.

    Article  CAS  Google Scholar 

  12. Morisset, W. M. L. and Khan, A. W. (1984),Biotech. Lett. 6(6), 375–378.

    Article  CAS  Google Scholar 

  13. Breuil, C., Chan, M., Gilbert, M., and Saddler, J. N. (1992),Bioresource Technol. 39, 139–142.

    Article  CAS  Google Scholar 

  14. Chahal, P. S., Chahal, D. S., and Le, G. B. B. (1995),Appl. Biochem. Biotechnol. 57/58, 433–442.

    Article  Google Scholar 

  15. Mandels, M. and Weber, J. (1969),Adv. Chem. Ser. 95, 391–414.

    Article  CAS  Google Scholar 

  16. Sternberg, D., Vijayakumar, P., and Reese, E. T. (1977),Can. J. Microbiol. 23, 139–147.

    Article  CAS  Google Scholar 

  17. Srivastava, S. K., Ramachandran, K. B., and Gopalkrishnan, K. S. (1981),Biotech. Lett. 3, 477–480.

    Article  CAS  Google Scholar 

  18. Staniforth, A. R. (1979),Cereal Straw. Oxford University Press, Oxford, UK, p. 27.

    Google Scholar 

  19. Mandels, M., Andreotti, R., and Roche, C. (1976),Biotechnol. Bioeng. Symposium No. 6, 21–23.

  20. Ghose, T. K. (1987),Pure and Appl. Chem. 59(2), 257–268.

    Article  CAS  Google Scholar 

  21. Toyama, N. and Ogawa, K. (1972),Fermentation Technology Today. Society of Fermentation Technology, Japan, pp. 743–757.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awafo, V.A., Chahal, D.S., Simpson, B.K. et al. Production of cellulase systems by selected mutants ofTrichoderma reesei in solid-state fermentation and their hydrolytic potentials. Appl Biochem Biotechnol 57, 461–470 (1996). https://doi.org/10.1007/BF02941726

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02941726

Index Entries

Navigation