Skip to main content

Advertisement

Log in

Multiheaded rotating gamma cameras in cardiac single-photon emission computed tomographic imaging

  • Reviews
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Multiheaded rotating gamma cameras can do more than simply decrease the time required for cardiac single-photon emission computed tomographic (SPECT) acquisitions. They give their users a flexibility to improve image quality that cannot be achieved so easily with single-headed systems. Multiheaded cameras can be used to acquire quickly those radiopharmaceuticals whose distributions washout very rapidly, increase count levels in noisy images without lengthening imaging time, permit high-resolution collimation or electrocardiographic gating with little or no decrease in counts, or acquire transmission images for attenuation correction concurrently with an emission study. This new generation of SPECT scanners gives the nuclear cardiology community a unique opportunity to create a new generation of cardiac SPECT images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stokely EM, Sveinsdottir E, Lassen NA, Rommer P. A single photon dynamic computer assisted tomograph (DCAT) for imaging brain function in multiple cross sections. J Comput Assist Tomogr 1980;4:230–40.

    Article  PubMed  CAS  Google Scholar 

  2. Rogers WL, Clinthorne NH, Stamos J, et al. Performance evaluation of SPRINT, a single-photon ring tomograph for brain imaging. J Nucl Med 1984;25:1013–8.

    PubMed  CAS  Google Scholar 

  3. Genna S, Smith AP. The development of ASPECT, an annular single crystal brain camera for high efficiency SPECT. IEEE Trans Nucl Sci 1988;NS-35:740–3.

    Google Scholar 

  4. Yonekura Y, Fujita T, Nishizawa S, et al. Multi-detector SPECT scanner for brain and body: system performance and applications. J Comput Assist Tomogr 1989;13:732–40.

    Article  PubMed  CAS  Google Scholar 

  5. Lim C, Walker R, Pinkstaff C, et al. Triangular SPECT system for 3-d total organ volume imaging: performance results and dynamic imaging capability. IEEE Trans Nucl Sci 1986;NS-33:501–4.

    Article  Google Scholar 

  6. Devous MD, Corbett JR, Bonte FJ, et al. Initial on-site evaluation of a new three-headed SPECT system (Prism) [Abstract]. J Nucl Med 1988;29:760.

    Google Scholar 

  7. Nakajima K, Taki J, Hisada K, et al. A three-headed SPECT system with high resolution and high sensitivity: application to myocardial imaging. Jpn J Nucl Med 1990;27:493–7.

    CAS  Google Scholar 

  8. Links JM. Multi-detector single-photon emission tomography: are two (or three or four) heads really better than one? Eur J Nucl Med 1993;20:440–7.

    Article  PubMed  CAS  Google Scholar 

  9. Eisner RL, Nowak DJ, Pettigrew RI, Fajman W. Fundamentals of 180° acquisition and reconstruction in SPECT imaging. J Nucl Med 1986;27:1717–28.

    PubMed  CAS  Google Scholar 

  10. Go RT, MacIntyre WJ, Houser TS, et al. Comparative study of thallium emission myocardial tomography with 180° and 360° data collection. J Nucl Med 1982;23:661–6.

    Google Scholar 

  11. Bok BD, Bice AN, Clausen M, Wong DF, Wagner HN Jr. Artifacts in camera-based single photon emission tomography due to time activity variation. Eur J Nucl Med 1987;13:439–42.

    Article  PubMed  CAS  Google Scholar 

  12. O’Connor MK, Cho DS. Rapid radiotracer washout from the heart: effect on image quality in SPECT performed with a single-headed gamma camera system. J Nucl Med 1992;33:1146–51.

    PubMed  CAS  Google Scholar 

  13. Friedman J, Berman DS, Van Train K, et al. Patient motion in Tl-201 myocardial SPECT imaging: an easily identified frequent source of artifactual defect. Clin Nucl Med 1988;13:321–4.

    Article  PubMed  CAS  Google Scholar 

  14. Eisner RL, Churchwell A, Noever T, et al. Quantitative analysis of the tomographic Tl-201 myocardial bullseye display: critical role of correcting for patient motion. J Nucl Med 1988;29:91–7.

    PubMed  CAS  Google Scholar 

  15. Botvinick EH, Zhu YY, O’Connell WJ, Dae MW. A quantitative assessment of patient motion and its effect on myocardial perfusion SPECT images. J Nucl Med 1993;34:303–10.

    PubMed  CAS  Google Scholar 

  16. Germano G, Chua T, Kavanagh PB, Kiat H, Berman DS. Detection and correction of patient motion in a dynamic and static myocardial SPECT using a multidetector camera. J Nucl Med 1993;34:1349–56.

    PubMed  CAS  Google Scholar 

  17. Muehllehner G. Effect of resolution on required count density in ECT imaging: a computer simulation. Phys Med Biol 1985;30:163–73.

    Article  PubMed  CAS  Google Scholar 

  18. Fahey FH, Harkness BA, Keyes JW, et al. Sensitivity, resolution and image quality with a multi-head SPECT camera. J Nucl Med 1992;33:1859–63.

    PubMed  CAS  Google Scholar 

  19. Garcia EV, Cooke CD, Van Train KF, et al. Technical aspects of myocardial SPECT imaging with technetium-99m sestamibi. Am J Cardiol 1990;66:23E-31E.

    Article  PubMed  CAS  Google Scholar 

  20. Chua T, Kiat H, Germano G, et al. Rapid back-to-back adenosine stress/rest technetium-99m teboroxime myocardial perfusion SPECT using a triple-detector camera. J Nucl Med 1993;34:1485–93.

    PubMed  CAS  Google Scholar 

  21. Galt JR, Garcia EV, Robbins WL. Effects of myocardial wall thickness on SPECT quantification. IEEE Trans Med Img 1990;9:144–50.

    Article  CAS  Google Scholar 

  22. Schmarkey LS, Eisner RL, Martin SE, et al. Abnormal segmental contraction creates defects on SPECT Tc99m sestamibi perfusion images despite normal myocardial blood flow [Abstract]. J Nucl Med 1993;34:146P.

    Google Scholar 

  23. Corbett JR, McGhie AI, Faber TL. Perfusion defect size and severity using gated SPECT sestamibi: comparison to ungated imaging [Abstract]. J Nucl Med 1994.

  24. Cooke CD, Ziffer JA, Folks RD, Garcia EV. A count-based method for quantifying myocardial thickening from SPECT Tc-99m sestamibi studies: description of the method [Abstract]. J Nucl Med 1991;32:1068.

    Google Scholar 

  25. Kahn JK, Henderson EB, Akers AS, et al. Prediction of reversibility of perfusion defects with a single postexercise technetium-99m RP-30A gated tomographic image: the role of residual systolic thickening [Abstract]. J Am Coll Cardiol 1988;11:31A.

    Google Scholar 

  26. Faber TL, Akers MS, Peshock RM, Corbett JR. Three dimensional motion and perfusion quantification in gated single photon emission computed tomograms. J Nucl Med 1991;32:2311–7.

    PubMed  CAS  Google Scholar 

  27. Tung CH, Gullberg GT, Zeng GL, et al. Non-uniform attenuation correction using simultaneous transmission and emission converging tomography. IEEE Trans Nucl Sci 1992;39:1134–43.

    Article  CAS  Google Scholar 

  28. Jaszczak RJ, Gillian DR, Hanson MW, Jang SZ, Greer KL, Coleman RE. Fast transmission CT for determining attenuation maps using a collimated line source, rotatable air-copper-lead attenuators and fan-beam collimation. J Nucl Med 1993;34:1577–86.

    PubMed  CAS  Google Scholar 

  29. Tsui BMW, Gullberg GT, Edgerton ER, et al. Correction of nonuniform attenuation in cardiac SPECT. J Nucl Med 1989;30:497–507.

    PubMed  CAS  Google Scholar 

  30. Nakajima K, Taki J, Bunko H, et al. Dynamic acquisition with a 3-headed SPECT system: application to Tc-99m SQ30217 myocardial imaging. J Nucl Med 1991;32:1273–7.

    PubMed  CAS  Google Scholar 

  31. Burns RJ, Fung A, Iles S, et al. Exercise Tc-99m teboroxime cardiac SPECT: results of a Canadian multi-center trial [Abstract]. J Nucl Med 1991;32:919.

    Google Scholar 

  32. Corbett JR, Jansen DE, Lewis SE, et al. Tomographic gated blood pool radionuclide ventriculography: analysis of wall motion and left ventricular volumes in patients with coronary artery disease. J Am Coll Cardiol 1985;6:349–58.

    Article  PubMed  CAS  Google Scholar 

  33. Galt JR, Cullom SJ, Garcia EV. SPECT quantification: a simplified method of attenuation and scatter correction for cardiac imaging. J Nucl Med 1992;33:2232–7.

    PubMed  CAS  Google Scholar 

  34. Frey EC, Tsui BMW, Perry JR. Simultaneous acquisition of emission and transmission data for improved thallium-201 cardiac SPECT imaging using a technetium-99m transmission source. J Nucl Med 1992;33:2238–45.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faber, T.L. Multiheaded rotating gamma cameras in cardiac single-photon emission computed tomographic imaging. J. Nucl. Cardiol. 1, 292–303 (1994). https://doi.org/10.1007/BF02940343

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02940343

Key Words

Navigation