Skip to main content

Advertisement

Log in

Cardiac metabolism: A technical spectrum of modalities including positron emission tomography, single-photon emission computed tomography, and magnetic resonance spectroscopy

  • Review
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Noninvasive techniques for the assessment of cardiac metabolism are important for the detection of potentially salvageable tissue in jeopardized areas of the myocardium. The correct identification of hibernating and stunned myocardium in patients with severely depressed cardiac function can have vital therapeutic consequences for the patient. Changes in myocardial fatty acid and glucose metabolism during acute and prolonged ischemia can be traced by positron-emitting or gamma-emitting radiopharmaceuticals. Alternatively,31P-labeled magnetic resonance spectroscopy can be used for the assessment of high-energy phosphate metabolism. It is not yet clear which modality will emerge as the most useful in the clinical setting. Positron emission tomography (PET) that uses combinations of flow tracers and metabolic tracers offers unique opportunities for quantification and high-resolution static and rapid dynamic studies. Currently, assessment of glucose metabolism with18F-fluorodeoxyglucose is regarded as the gold standard for myocardial viability and prediction of improvement of impaired contractile function after revascularization. However, preserved oxidative metabolism may be required for potential functional improvement, and therefore assessment of residual oxidative metabolism by11C-labeled acetate PET may prove to be more accurate than18F-fluorodeoxyglucose PET, which reflects both anaerobic and oxidative metabolism. Moreover, because fatty acids are metabolized only aerobically, they are excellent candidates for the clinical assessment of myocardial viability and prediction of functional improvement after revascularization. Especially derivatives of fatty acids that are not metabolized but accumulate in the myocyte are attractive for myocardial imaging. Examples are123I-beta-methyl-p-iodophenyl pentadecanoic acid and 15-(o-123I-phenyl)-pentadecanoic acid. These tracers can be detected by planar scintigraphy and single-photon emission computed tomography, which are more economical and widely available than PET. In addition, 511 keV collimators have been developed recently, making the detection of positron emitters by planar scintigraphy and single-photon emission computed tomography feasible. The experience with31P-labeled magnetic resonance spectroscopy in humans is still limited. With current magnetic resonance spectroscopic techniques, insufficient spatial resolution is achieved for clinical purposes, but the possibility of serial measurements to monitor rapid changes of phosphate-containing molecules in time makes magnetic resonance spectroscopy very valuable for the research of myocardial metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gropler RJ, Bergmann SR. Myocardial viability: what is the definition? J Nucl Med 1991;32:10–2.

    PubMed  CAS  Google Scholar 

  2. Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP. Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F]2-fluoro-2-deoxy-d-glucose. J Nucl Med 1978;19:1154–61.

    PubMed  CAS  Google Scholar 

  3. Ratib O, Phelps ME, Huang SC, Henze E, Selin CE, Schelbert HR. Positron tomography with deoxyglucose for estimating local myocardial glucose metabolism. J Nucl Med 1982;23:577–86.

    PubMed  CAS  Google Scholar 

  4. Phelps ME, Schelbert HR, Mazziotta JC. Positron computed tomography for studies of myocardial and cerebral function. Ann Intern Med 1983;98:339–59.

    PubMed  CAS  Google Scholar 

  5. Halama JR, Gratley J, DeGrado TR, Bernstein DR, Ng CK, Holden JE. Validation of 3-deoxy-3-fluoro-d-glucose as a glucose transport analogue in rat heart. Am J Physiol 1984;246:H777–87.

    Google Scholar 

  6. Gambhir SS, Schwaiger M, Huang SC, et al. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med 1989;30:359–66.

    PubMed  CAS  Google Scholar 

  7. Schwaiger M, Schelbert HR, Ellison D, et al. Sustained regional abnormalities in cardiac metabolism after transient ischemia in the chronic dog model. J Am Coll Cardiol 1985;6:336–47.

    PubMed  CAS  Google Scholar 

  8. Choi Y, Hawkins RA, Huang SC, et al. Parametric images of myocardial metabolic rate of glucose generated from dynamic cardiac PET and 2-[18F]fluoro-2-deoxy-d-glucose studies. J Nucl Med 1991;32:733–8.

    PubMed  CAS  Google Scholar 

  9. Camici P, Ferrannini E, Opie L. Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis 1989;32:217–38.

    PubMed  CAS  Google Scholar 

  10. Gropler RJ, Siegel BA, Lee KJ, et al. Nonuniformity in myocardial accumulation of fluorine-18-fluorodeoxyglucose in normal fasted humans. J Nucl Med 1990;31:1749–56.

    PubMed  CAS  Google Scholar 

  11. Choi Y, Brunken RC, Hawkins RA, et al. Factors affecting myocardial 2-[F-18]fluoro-2-deoxy-d-glucose uptake in positron emission tomography studies of normal humans. Eur J Nucl Med 1993;20:308–18.

    PubMed  CAS  Google Scholar 

  12. vom Dahl J, Herman WH, Hicks RJ, et al. Myocardial glucose uptake in patients with insulin-dependent diabetes mellitus assessed quantitatively by dynamic positron emission tomography. Circulation 1993;88:395–404.

    Google Scholar 

  13. Schwaiger M, Brunken R, Grover-McKay M, et al. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography. J Am Coll Cardiol 1986;8:800–8.

    PubMed  CAS  Google Scholar 

  14. Niemeyer MG, Kuijper AF, Gerhards LJ, D’Haene EG, van der Wall EE. Nitrogen-13 ammonia perfusion imaging: relation to metabolic imaging. Am Heart J 1993;125:848–54.

    PubMed  CAS  Google Scholar 

  15. Marshall RC, Tillisch JH, Phelps ME, et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation 1983;67:766–78.

    PubMed  CAS  Google Scholar 

  16. Tillisch J, Brunken R, Marshall R, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884–8.

    PubMed  CAS  Google Scholar 

  17. Schelbert HR, Schwaiger M. Positron emission tomography in human myocardial ischemia. Herz 1987;12:22–40.

    PubMed  CAS  Google Scholar 

  18. Tamaki N, Yonekura Y, Yamashita K, et al. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 1989;64:860–5.

    PubMed  CAS  Google Scholar 

  19. Al-Aouar ZR, Eitzman D, Hepner A, et al. PET assessment of myocardial tissue viability: University of Michigan experience [Abstract]. J Nucl Med 1990;31:801.

    Google Scholar 

  20. Tamaki N, Yonekura Y, Yamashita K, et al. Prediction of reversible ischemia after coronary artery bypass grafting by positron emission tomography. J Cardiol 1991;21:193–201.

    PubMed  CAS  Google Scholar 

  21. Marwick TH, MacIntyre WJ, Lafont A, Nemec JJ, Salcedo EE. Metabolic responses of hibernating and infarcted myocardium to revascularization: a follow-up study of regional perfusion, function, and metabolism. Circulation 1992;85:1347–53.

    PubMed  CAS  Google Scholar 

  22. Lucigiani G, Paolini G, Landoni C, et al. Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis-2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-d-glucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med 1992;19:874–81.

    Google Scholar 

  23. Tamaki N. Current status of viability assessment with positron emission tomography. J Nucl Cardiol 1994;1:S40–7.

    PubMed  CAS  Google Scholar 

  24. Gropler RJ, Geltman EM, Sampathkumaran K, et al. Comparison of carbon-11-acetate with fluorine-18-deoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol 1993;22:1587–97.

    PubMed  CAS  Google Scholar 

  25. Eitzman D, al-Aouar Z, Kanter HL, et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992;20:559–65.

    PubMed  CAS  Google Scholar 

  26. Zaret BL, Wackers FJ. Nuclear cardiology (first of two parts). N Engl J Med 1993;329:775–83.

    PubMed  CAS  Google Scholar 

  27. Sebree L, Bianco JA, Subramanian R, et al. Discordance between accumulation of C-14 deoxyglucose and Tl-201 in reperfused myocardium. J Mol Cell Cardiol 1991;23:603–16.

    PubMed  CAS  Google Scholar 

  28. Gropler RJ, Bergmann SR. Flow and metabolic determinants of myocardial viability assessed by positron-emission tomography. Coron Artery Dis 1993;4:495–504.

    PubMed  CAS  Google Scholar 

  29. Phelps ME, Maziotta JC, Schelbert HR, eds. Positron emission tomography and autoradiography: principles and applications for the brain and heart. New York: Raven Press, 1986:690.

    Google Scholar 

  30. van Lingen A, Huijgens PC, Visser FC, et al. Performance characteristics of a 511-keV collimator for imaging positron emitters with a standard gamma-camera. Eur J Nucl Med 1992;19:315–21.

    PubMed  Google Scholar 

  31. Bax JJ, Visser FC, van Lingen A, et al. Detection of viable myocardium by FDG SPECT during hyperinsulinemic glucose clamping [Abstract]. J Nucl Med 1993;34:147P.

    Google Scholar 

  32. Bax JJ, Visser FC, van Lingen A, et al. Feasibility of assessing regional myocardial uptake of 18F-fluorodeoxyglucose using single photon emision tomography. Eur Heart J 1993;14:1675–82.

    PubMed  CAS  Google Scholar 

  33. Williams KA, Taillon LA, Stark VJ. Quantitative planar imaging of glucose metabolic activity in myocardial segments with exercise thallium-201 perfusion defects in patients with myocardial infarction: comparison with late (24-hour) redistribution thallium imaging for detection of reversible ischemia. Am Heart J 1992;124:294–304.

    PubMed  CAS  Google Scholar 

  34. Poe ND, Robinson GD Jr, Graham LS, MacDonald NS. Experimental basis for myocardial imaging with I-123-labeled hexadecanoic acid. J Nucl Med 1976;17:1077–82.

    PubMed  CAS  Google Scholar 

  35. Machulla HJ, Stöcklin G, Kupfernagel C, et al. Comparative evaluation of fatty acids labeled with C-11, Cl-34m, Br-77 and I-123 for metabolic studies of the myocardium: concise communication. J Nucl Med 1978;19:298–302.

    PubMed  CAS  Google Scholar 

  36. Sobel BE, Weiss E, Welch M, et al. Detection of remote myocardial infarction in patients with positron emission transaxial tomography and intravenous C-11 palmitate. Circulation 1977;55:853–7.

    PubMed  CAS  Google Scholar 

  37. Sobel BE. Positron tomography and myocardial metabolism: an overview. Circulation 1985;72:IV22–30.

    PubMed  CAS  Google Scholar 

  38. Schelbert H, Henze E, Schon H, et al. C-11 palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron emission tomography, IV: in vivo demonstration of impaired fatty acid oxidation in acute myocardial ischemia. Am Heart J 1983;106:736–50.

    PubMed  CAS  Google Scholar 

  39. Liedtke AJ. Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis 1981;23:321–36.

    PubMed  CAS  Google Scholar 

  40. Lerch R. Assessment of myocardial fatty acid metabolism with carbon-11 palmitate. In: van der Wall EE, Sochor H, Righetti A, Niemeyer MG, eds. What’s new in cardiac imaging? SPECT, PET, and MRI. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1992:249–61.

    Google Scholar 

  41. Lerch RA, Ambos HD, Bergmann SR, Welch MJ, Ter-Pogossian MM, Sobel BE. Localization of viable, ischemic myocardium by positron-emission tomography with 11C-palmitate. Circulation 1981;64:689–99.

    PubMed  CAS  Google Scholar 

  42. Schön HR, Schelbert HR, Robinson G, et al. C-11 palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron emission tomography, I: kinetics of C-11 palmitic acid in normal myocardium. Am Heart J 1981;103:532–47.

    Google Scholar 

  43. Rosamond TL, Abendschein DR, Sobel BE, Bergmann SR, Fox KA. Metabolic fate of radiolabeled palmitate in ischemic canine myocardium: implications for positron emission tomography. J Nucl Med 1987;28:1322–9.

    PubMed  CAS  Google Scholar 

  44. Grover-McKay M, Schelbert HR, Schwaiger M, et al. Identification of impaired metabolic reserve by atrial pacing in patients with significant coronary artery stenosis. Circulation 1986;74:281–92.

    PubMed  CAS  Google Scholar 

  45. Schelbert HR, Henze E, Sochor H, et al. Effects of substrate availability on myocardial C-11 palmitate kinetics by positron emission tomography in normal subjects and patients with ventricular dysfunction. Am Heart J 1986;111:1055–64.

    PubMed  CAS  Google Scholar 

  46. Fox KAA, Abendschein D, Amos HD, Sobel BE, Bergmann SE. Efflux of metabolized and nonmetabolized fatty acid from canine myocardium: implications for quantifying myocardial metabolism tomographically. Circ Res 1985;57:232–43.

    PubMed  CAS  Google Scholar 

  47. Evans JR, Phil D, Gunton RW, Baker RG, Spears JC, Beanlands DS. Use of radioiodinated fatty acid for photoscans of the heart. Circ Res 1965;16:1–10.

    PubMed  CAS  Google Scholar 

  48. Poe ND, Robinson GD Jr, MacDonald NS. Myocardial extraction of labeled long-chain fatty acid analogs. Proc Soc Exp Biol Med 1975;148:215–8.

    PubMed  CAS  Google Scholar 

  49. Westera G, van der Wall EE, Heidendal GAK, van den Bos GC. A comparison between terminally radioiodinated hexadecanoic acid (I-HA) and Tl-201-thallium chloride in the dog heart: implications for the use of I-HA for myocardial imaging. Eur J Nucl Med 1980;5:339–43.

    PubMed  CAS  Google Scholar 

  50. van der Wall EE, Westera G, Heidendal GAK, den Hollander W. A comparison between terminally radioiodinated hexadecenoic acid (125I-HA) and heptadecanoic acid (131I-HOA) in the dog heart. Eur J Nucl Med 1981;6:581–4.

    PubMed  Google Scholar 

  51. van der Wall EE, den Hollander W, Heidendal GAK, Westera G, Majid PA, Roos JP. Dynamic myocardial scintigraphy with123I-labeled free fatty acids in patients with myocardial infarction. Eur J Nucl Med 1981;6:383–9.

    PubMed  Google Scholar 

  52. van der Wall EE, Heidendal GAK, den Hollander W, Westera G, Roos JP. Myocardial scintigraphy with123I-labelled heptadecanoic acid in patients with unstable angina pectoris. Postgrad Med J 1983;59:38–40.

    PubMed  Google Scholar 

  53. van der Wall EE, Heidendal GAK, den Hollander W, Westera G, Roos JP. I-123 labeled hexadecenoic acid in comparison with thallium-201 for myocardial imaging in coronary heart disease: a preliminary study. Eur J Nucl Med 1980;5:401–5.

    PubMed  Google Scholar 

  54. Visser FC, van Eenige MJ, Westera G, et al. Metabolic fate of radioiodinated heptadecanoic acid in the normal canine heart. Circulation 1985;72:565–71.

    PubMed  CAS  Google Scholar 

  55. van Eenige MJ, Visser FC, Duwel CMB, Karreman AJP, van Lingen A, Roos JP. Comparison of 17-iodine-131 heptadecanoic acid kinetics from externally measured time-activity curves and from serial myocardial biopsies in an open-chest canine model. J Nucl Med 1988;29:1934–42.

    PubMed  Google Scholar 

  56. Machulla HJ, Marsmann M, Dutschka K. Biochemical concept and synthesis of a radioiodinated phenylfatty acid for in vivo metabolic studies of the myocardium. Eur J Nucl Med 1980;5:171–3.

    PubMed  CAS  Google Scholar 

  57. Dudczak R, Schmolinger R, Kletter K, Frischauf H, Angelberger P. Clinical evaluation of123I-labeled-p-phenylpentadecanoic acid (p-IPPA) for myocardial scintigraphy. J Nucl Med Allied Sci 1983;27:267–79.

    PubMed  CAS  Google Scholar 

  58. Beckurts TE, Shreeve WW, Schieren R, Feinendegen LE. Kinetics of different 123I- and 14C-labelled fatty acids in normal and diabetic rat myocardium in vivo. Nucl Med Commun 1985;6:415–24.

    PubMed  CAS  Google Scholar 

  59. Antar MA, Spohr G, Herzog HH, et al. 15-(ortho-123I-phenyl)-pentadecanoic acid, a new myocardial imaging agent for clinical use. Nucl Med Commun 1986;7:683–96.

    PubMed  CAS  Google Scholar 

  60. Kaiser KP, Geuting B, Grossmann K, et al. Tracer kinetics of 15-(ortho-123/131I-phenyl)-pentadecanoic acid (oPPA) and 15-(para-123/131I-phenyl)-pentadecanoic acid (pPPA) in animals and man. J Nucl Med 1990;31:1608–16.

    PubMed  CAS  Google Scholar 

  61. Reske SN. Experimental and clinical experience with iodine 123-labeled iodophenylpentadecanoic acid in cardiology. J Nucl Cardiol 1994;1:S58–64.

    PubMed  CAS  Google Scholar 

  62. Ambrose KR, Owen BA, Goodman MM, Knapp FF Jr. Evaluation of the metabolism in rat hearts of two new radioiodinated 3-methyl-branched fatty acid myocardial imaging agents. Eur J Nucl Med 1987;12:486–91.

    PubMed  CAS  Google Scholar 

  63. Knapp FF Jr, Goodman MM, Ambrose KR, et al. The development of radioiodinated 3-methyl-branched fatty acids for evaluation of myocardial disease by single photon techniques. In: van der Wall EE, ed. Noninvasive imaging of cardiac metabolism. Dordrecht: Martinus Nijhoff, 1987:159–201.

    Google Scholar 

  64. Yamamichi Y, Shirakami Y, Morishita K, Kurami M, Kusuoka H, Nishimara T. Intramyocardial metabolism of β-methyl-p-iodophenyl pentadecanoic acid (BMIPP) [Abstract]. J Nucl Med 1994;35:97P.

    Google Scholar 

  65. Suzuki N, Kurami M, Kusuoka H, Nishimura T. Myocardial intracellular kinetics of branched-chained free fatty acid, I-123 BMIPP [Abstract]. J Nucl Med 1994;35:97P.

    Google Scholar 

  66. Knapp FF Jr, Goodman MM, Callahan AP, Kirsch G. Radioiodinated 15-(p-iodophenyl)-3,3-dimethylpentadecanoic acid: a useful new agent to evaluate myocardial fatty acid uptake. J Nucl Med 1986;27:521–31.

    PubMed  CAS  Google Scholar 

  67. Sloof GW, Visser FC, Eenige van MJ, et al. Comparison of uptake, oxidation and lipid distribution of 17-iodoheptadecanoic acid, 15-(p-iodophenyl)pentadecanoic acid and 15-(p-iodophenyl)-3,3-dimethylpentadecanoic acid in normal canine myocardium. J Nucl Med 1993;34:649–57.

    PubMed  CAS  Google Scholar 

  68. Reske SN.123I-phenylpentadecanoic acid as a tracer of cardiac free fatty acid metabolism: experimental and clinical results. Eur Heart J 1985;6:39–47.

    PubMed  CAS  Google Scholar 

  69. Railton R, Rodger JC, Small DR, Harrower AD. Myocardial scintigraphy with I-123 heptadecanoic acid as a test for coronary heart disease. Eur J Nucl Med 1987;13:63–6.

    PubMed  CAS  Google Scholar 

  70. Dudczak R, Schmoliner R, Angelberger P, Knapp FF, Goodman MM. Structurally modified ratty acids: clinical potential as tracers of metabolism. Eur J Nucl Med 1986;12:S45–8.

    PubMed  Google Scholar 

  71. van der Wall EE, Heidendal GAK, den Hollander W, Westera G, Roos JP. Metabolic myocardial imaging with123I-labeled heptadecanoic acid in patients with angina pectoris. Eur J Med 1981;6:391–6.

    Google Scholar 

  72. Tamaki N, Kawamoto M. The use of iodinated free fatty acids for assessing fatty acid metabolism. J Nucl Cardiol 1994;1:S72–8.

    PubMed  CAS  Google Scholar 

  73. Nishimura T, Uehara T, Shimonagata T, Nagata S, Haze K. Clinical results with β-methyl-p-(123I) iodophenylpentadecanoic acid, single-photon emission computed tomography in cardiac disease. J Nucl Cardiol 1994;1:S65–71.

    PubMed  CAS  Google Scholar 

  74. Reske SN. Viability as seen with radiolabelled fatty acids: a new approach to a challenging problem. Eur J Nucl Med 1994;21:279–82.

    PubMed  CAS  Google Scholar 

  75. Murray G, Schad N, Ladd W, et al. Metabolic cardiac imaging in severe coronary disease: assessment of viability with iodine-123-iodophenylpentadecanoic acid and multicrystal gamma camera, and correlation with biopsy. J Nucl Med 1992;33:1269–77.

    PubMed  CAS  Google Scholar 

  76. Murray GL, Schad NC, Magill HL, Van der Zwaag R. Myocardial viability assessment with dynamic low-dose iodine-123-iodophenylpentadecanoic acid metabolic imaging: comparison with myocardial biopsy and reinjection SPECT thallium after myocardial infarction. J Nucl Med 1994;35:43S-8S.

    PubMed  CAS  Google Scholar 

  77. Kuikka JT, Mussalo H, Hietakorpi S, Vanninen E, Lansimies E. Evaluation of myocardial viability with technetium-99m hexakis-2-methoxyisobutyl isonitrile and iodine-123 phenylpentadecanoic acid and single photon emission tomography. Eur J Nucl Med 1992;19:882–9.

    PubMed  CAS  Google Scholar 

  78. Henrich MM, Vester E, von-der-Lohe E, et al. The comparison of 2-18F-2-deoxyglucose and 15-(ortho-123I-phenyl)-pentadecanoic acid uptake in persisting defects on thallium-201 tomography in myocardial infarction. J Nucl Med 1991;32:1353–7.

    PubMed  CAS  Google Scholar 

  79. Visser FC, Westra G, van Eenige MJ, van der Wall EE, Heidendal GAK, Roos JP. Free fatty acid scintigraphy in patients with successful thrombolysis after myocardial infarction. Clin Nucl Med 1985;10:35–9.

    PubMed  CAS  Google Scholar 

  80. Franken PR, De-Geeter F, Dendale P, Block P, Bossuyt A. Regional distribution of123I-(ortho-iodophenyl)-pentadecanoic acid and99mTc-MIBI in relation to wall motion after thrombolysis for acute myocardial infarction. Nucl Med Commun 1993;14:310–7.

    PubMed  CAS  Google Scholar 

  81. De Geeter F, Franken PR, Knapp FF Jr, Bossuyt A. Relationship between blood flow and fatty acid metabolism in subacute myocardial infarction: a study by means of99mTc-sestamibi and123I-β-methyl-iodo-phenylpentadecanoic acid. Eur J Nucl Med 1994;21:283–91.

    PubMed  Google Scholar 

  82. Walsh MN. Myocardial metabolic imaging with carbon-11-acetate. In: van der Wall EE, Sochor H, Righetti A, Niemeyer MN, eds. What’s new in cardiac imaging? SPECT, PET, and MRI. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1992:277–86.

    Google Scholar 

  83. Brown MA, Marshall DR, Sobel BE, Bergmann SR. Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation 1987;76:687–96.

    PubMed  CAS  Google Scholar 

  84. Armbrecht JJ, Buxton DB, Brunken RC, Phelps ME, Schelbert HR. Regional myocardial oxygen consumption determined noninvasively in humans with [1–11C]acetate and dynamic positron tomography. Circulation 1989;80:863–72.

    PubMed  CAS  Google Scholar 

  85. Brown MA, Myears DW, Bergmann SR. Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization. J Nucl Med 1989;30:187–93.

    PubMed  CAS  Google Scholar 

  86. Buxton DB, Nienaber CA, Luxen A, et al. Noninvasive quantitation of regional myocardial oxygen consumption in vivo with [1–11C]acetate and dynamic positron emission tomography. Circulation 1989;79:134–42.

    PubMed  CAS  Google Scholar 

  87. Weinheimer CJ, Brown MA, Nohara R, Perez JE, Bergmann SR. Functional recovery after reperfusion is predicated on recovery of myocardial oxidative metabolism. Am Heart J 1993;125:939–49.

    PubMed  CAS  Google Scholar 

  88. Heyndrickx GR, Wijns W, Vogelaers D, et al. Recovery of regional contractile function and oxidative metabolism in stunned myocardium induced by 1-hour circumflex coronary artery stenosis in chronically instrumented dogs. Circ Res 1993;72:901–13.

    PubMed  CAS  Google Scholar 

  89. Gropler RJ, Geltman EM, Sampathkumaran K, et al. Functional recovery after coronary revascularization for chronic coronary artery disease is dependent on maintenance of oxidative metabolism. J Am Coll Cardiol 1992;20:569–77.

    PubMed  CAS  Google Scholar 

  90. Walsh MN, Geltman EM, Brown MA, et al. Noninvasive estimation of regional myocardial oxygen consumption by positron emission tomography with carbon-11 acetate in patients with myocardial infarction. J Nucl Med 1989;30:1798–808.

    PubMed  CAS  Google Scholar 

  91. Henes CG, Bergmann SR, Perez JE, Sobel BE, Geltman EM. The time course of restoration of nutritive perfusion, myocardial oxygen consumption, and regional function after coronary thrombolysis. Coron Artery Dis 1990;1:687–96.

    Google Scholar 

  92. Shelton ME, Dence CS, Hwang DR, Welch MJ, Bergmann SR. Myocardial kinetics of fluorine-18 misonidazole: a marker of hypoxic myocardium. J Nucl Med 1989;30:351–8.

    PubMed  CAS  Google Scholar 

  93. Martin GV, Caldwell JH, Rasey JS, Grunbaum Z, Cerqueira M, Krohn KA. Enhanced binding of the hypoxic cell marker [3H]fluoromisonidazole in ischemic myocardium. J Nucl Med 1989;30:194–201.

    PubMed  CAS  Google Scholar 

  94. Shelton ME, Dence CS, Hwang DR, Herrero P, Welch MJ, Bergmann SR. In vivo delineation of myocardial hypoxia during coronary occlusion using fluorine-18 fluoromisonidazole and positron emission tomography: a potential approach for identification of jeopardized myocardium. J Am Coll Cardiol 1990;16:477–85.

    PubMed  CAS  Google Scholar 

  95. Martin GV, Caldwell JH, Graham MM, et al. Noninvasive detection of hypoxic myocardium using fluorine-18-fluoromisonidazole and positron emission tomography. J Nucl Med 1992;33:2202–8.

    PubMed  CAS  Google Scholar 

  96. Chapman JD. Hypoxic sensitizers: implications for radiation therapy. N Engl J Med 1979;301:1429–32.

    PubMed  CAS  Google Scholar 

  97. Miller GG, Ngan-Lee J, Chapman JD. Intracellular localization of radioactivity labeled misonidazole in EMT-6 tumor cells in vitro. Int J Radiat Oncol Biol Phys 1982;8:741–4.

    PubMed  CAS  Google Scholar 

  98. Franko AJ. Misonidazole and other hypoxia markers: metabolism and applications. Int J Radiat Oncol Biol Phys 1986;12:1195–202.

    PubMed  CAS  Google Scholar 

  99. Beanlands R, Schwaiger M. Cardiac applications of positronemission tomography. Curr Opin Radiol 1991;3:817–27.

    PubMed  CAS  Google Scholar 

  100. Martin GV, Biskupiak JE, Caldwell JH, Rasey JS, Krohn KA. Characterization of iodovinylmisonidazole as a marker for myocardial hypoxia. J Nucl Med 1993;34:918–24.

    PubMed  CAS  Google Scholar 

  101. Weinstein H, Reinhardt CP, Marcel R, Leppo JA. Direct detection of myocardial ischemia by Tc-99m nitroimidazole in rabbits [Abstract]. J Nucl Med 1994;35:3P.

    Google Scholar 

  102. Ng CK, Sinusas AJ, Zaret BL, Soufer R. Binding kinetics of Tc-99m labeled nitromidazole (BMS-181321) in hypoxic myocardium [Abstract]. J Nucl Med 1994;35:46P.

    Google Scholar 

  103. Johnson G III, Nguyen KN, Okada RD. Effects of low flow on myocardial retention of technetium-99m BMS181321 in an isolated perfused rat heart model [Abstract]. J Nucl Med 1994;35:46P.

    Google Scholar 

  104. Peshock RM. Assessing myocardial viability with magnetic resonance imaging. Am J Card Imaging 1992;6:237–43.

    PubMed  CAS  Google Scholar 

  105. Schaefer S. Clinical nuclear magnetic resonance spectroscopy: insight into metabolism. Am J Cardiol 1990;66:45F-50F.

    PubMed  CAS  Google Scholar 

  106. de Roos A, van der Wall EE. Magnetic resonance imaging and spectroscopy of the heart. Curr Opin Cardiol 1991;1:946–52.

    Article  Google Scholar 

  107. Rehr RB, Fuhs BE, Lee F, Tatum JL, Hirsch JI, Quint R. Differentiation of reperfused-viable (stunned) from reperfused-infarcted myocardium at 1 to 3 days postreperfusion by in vivo phosphorus-31 nuclear magnetic resonance spectroscopy. Am Heart J 1991;122:1571–82.

    PubMed  CAS  Google Scholar 

  108. Jacobus WE, Taylor GJIV, Hollis DP, Nunally RL. Phosphorus nuclear magnetic resonance of perfused working rat hearts. Nature 1977;265:765–8.

    Google Scholar 

  109. Nunnally RL, Bottomley PA. Assessment of pharmacological treatment of myocardial infarction by phosphorus-31 NMR with surface coils. Science 1981;211:177–80.

    PubMed  CAS  Google Scholar 

  110. Flahery JT, Weisfeldt ML, Bulkey BH, Gardner TJ, Gott VL, Jacobus WE. Mechanisms of ischemic myocardial cell damage assessed by phosphorus-31 nuclear magnetic resonance. Circulation 1982;65:561–70.

    Google Scholar 

  111. Rehr RB, Tatum JL, Hirsch JI, Wetstein L, Clarke G. Effective separation of normal, acutely ischemic, and reperfused myocardium with phosphorus 31 MR spectroscopy. Radiology 1988;168:81–9.

    PubMed  CAS  Google Scholar 

  112. Bailey IA, Seymour AL. The effects of reperfusion on the P-31 NMR spectrum of ischaemic rat hearts. Biochem Soc Trans 1981;9:234–6.

    CAS  Google Scholar 

  113. Bailey IA, Seymour AL, Radda GK. A P-31 NMR study of the effects of reflow on the ischemic rat heart. Biochim Biophys Acta 1981;637:1–7.

    PubMed  CAS  Google Scholar 

  114. Ichihara K, Abiko Y. Rebound recovery of myocardial creatine phosphate with reperfusion after ischemia. Am Heart J 1984;108:1594–7.

    PubMed  CAS  Google Scholar 

  115. Rehr R, Tatum JL, Quint R, Clarke G. Reperfused-viable and reperfused-infarcted myocardium: differentiation by in vivo P-31 MR spectroscopy. Radiology 1989;172:53–8.

    PubMed  CAS  Google Scholar 

  116. Wroblewski LC, Aisen AM, Swanson SD, Buda AJ. Evaluation of myocardial viability following ischemic and reperfusion injury using phosphorus 31 nuclear magnetic resonance spectroscopy in vivo. Am Heart J 1990;120:31–9.

    PubMed  CAS  Google Scholar 

  117. Schwartz GG, Schaefer S, Meyerhoff DJ, et al. Dynamic relation between myocardial contractility and energy metabolism during and following brief coronary occlusion in the pig. Circ Res 1990;67:490–500.

    PubMed  CAS  Google Scholar 

  118. Schaefer S, Carr LJ, Kreutzer U, Jue T. Myocardial adaptation during acute hibernation: mechanisms of phosphocreatine recovery. Cardiovasc Res 1993;27:2044–51.

    PubMed  CAS  Google Scholar 

  119. Bottomley PA, Herfkens RJ, Smith LS, Bahore TM. Altered phosphate metabolism in myocardial infarction P-31 spectroscopy. Radiology 1987;165:703–7.

    PubMed  CAS  Google Scholar 

  120. Blackledge MJ, Rajagopalan B, Oberhaensli RD, Bolas NM, Styles P, Radda G. Quantitative studies of human cardiac metabolism by 31P rotationframe NMR. Proc Natl Acad Sci USA 1987;84:4283–7.

    PubMed  CAS  Google Scholar 

  121. Weiss RG, Bottomley PA, Hardy CJ, Gerstenblith G. Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. N Engl J Med 1990;323:1593–600.

    PubMed  CAS  Google Scholar 

  122. Bottomley PA, Weiss RG, Hardy CJ, Baumgartner WA. Myocardial high-energy phosphate metabolism and allograft rejection in patients with heart transplants. Radiology 1991;181:67–75.

    PubMed  CAS  Google Scholar 

  123. Bottomley PA, Hardy CJ, Roemer PB. Phosphate metabolism imaging and concentration measurements in human heart by nuclear magnetic resonance. Magn Reson Med 1990;14:425–34.

    PubMed  CAS  Google Scholar 

  124. de Roos A, Luyten PR, Doornbos J, van der Laarse A, van der Wall EE. Clinical phosphorus-31 magnetic resonance spectroscopy in cardiomyopathy. In: Pohost GM, ed. Cardiovascular applications of magnetic resonance. Mount Kisco, New York: Futura Publishing, 1993:363–70.

    Google Scholar 

  125. Schaefer S, Gober JR, Schwartz GG, Twieg DB, Weiner MW, Massie B. In vivo phosphorus-31 spectroscopic imaging in patients with global myocardial disease. Am J Cardiol 1990;65:1154–61.

    PubMed  CAS  Google Scholar 

  126. Schaefer S, Gober JR, Valenza M, et al. Nuclear magnetic resonance imaging-guided phosphorus-31 spectroscopy of the human heart. J Am Coll Cardiol 1988;12:1449–55.

    Article  PubMed  CAS  Google Scholar 

  127. Beanlands RS, Dawood F, Wen WH, et al. Are the kinetics of technetium-99m methoxyisobutyl isonitrile affected by cell metabolism and viability? Circulation 1990;82:1802–14.

    PubMed  CAS  Google Scholar 

  128. Carvalho PA, Chiu ML, Kronarige JF, et al. Subcellular distribution and analysis of Tc99m-MIBI in isolated perfused rat hearts. J Nucl Med 1992;33:1516–21.

    PubMed  CAS  Google Scholar 

  129. Crane P, Laliberte R, Heminway S, Thoolen M, Orlandi C. Effect of mitochondrial viability and metabolism on technetium-99m-sestamibi myocardial retention. Eur J Nucl Med 1993;20:20–5.

    PubMed  CAS  Google Scholar 

  130. Altehoefer C, Kaiser HJ, Dörr R, et al. Fluorine-18 deoxyglucose PET for assessment of viable myocardium in perfusion defects in99mTc-MIBI SPET: a comparative study in patients with coronary artery disease. Eur J Nucl Med 1992;19:334–42.

    PubMed  CAS  Google Scholar 

  131. Sawada SG, Allman KC, Muzik O, et al. Positron emission tomography detects evidence of viability in rest technetium-99m sestamibi defects. J Am Coll Cardiol 1994;23:92–8.

    PubMed  CAS  Google Scholar 

  132. Cuoculo A, Pace L, Ricciardelli B, Chiaririello M, Trimarco B, Salvatore M. Identification of viable myocardium in patients with chronic coronary artery disease: comparison of thallium-201 scintigraphy with reinjection and technetium 99m methoxyisobutyl isonitrile. J Nucl Med 1992;33:505–11.

    Google Scholar 

  133. Marzullo P, Sambuceti G.99mTc-sestamibi: its clinical role as a viability agent. J Nucl Biol Med 1992;36:259–66.

    PubMed  CAS  Google Scholar 

  134. Piwnica-Worms D, Kronauge JF, Chiu ML. Uptake and retention of hexakis (2-methoxyisobutyl isonitrile) technetium(I) in cultured chick myocardial cells: mitochondrial and plasma membrane potential dependence. Circulation 1990;82:1826–38.

    PubMed  CAS  Google Scholar 

  135. Schoeder H, Friedrich M, Topp H. Myocardial viability: what do we need? Eur J Nucl Med 1993;20:792–803.

    PubMed  CAS  Google Scholar 

  136. Dilsizian V, Rocco TP, Freedman NM, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990;323:141–6.

    PubMed  CAS  Google Scholar 

  137. Dilsizian V, Bonow RO. Current diagnostic techniques of assessing myocardial viability in hibernating and stunned myocardium. Circulation 1993;87:1–20.

    PubMed  CAS  Google Scholar 

  138. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction: comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation 1991;83:26–37.

    PubMed  CAS  Google Scholar 

  139. van Eck-Smit BLF, van der Wall EE, Kuijper AFM, Zwinderman AH, Pauwels EKJ. Immediate Tl-201 reinjection following stress imaging: a novel time-saving approach for detection of myocardial viability. J Nucl Med 1993;34:737–43.

    PubMed  Google Scholar 

  140. Kuijper AFM, Niemeyer MG, D’Haene EGM, van der Wall EE, Pauwels EKJ. Stress-reinjection thallium-201 scintigraphy: prediction of effect of coronary artery bypass grafting on regional myocardial perfusion [Abstract]. J Am Coll Cardiol 1993;21:389A.

    Google Scholar 

  141. Ohtani H, Tamaki N, Yonekura Y, et al. Value of thallium-201 reinjection after delayed SPECT imaging for predicting reversible ischemia after coronary artery bypass grafting. Am J Cardiol 1990;66:394–9.

    PubMed  CAS  Google Scholar 

  142. Tamaki N, Ohtani H, Yamashita K, et al. Metabolic activity in the areas of new fill-in after thallium-201 reinjection: comparison with positron emission tomography using fluorine-18-deoxyglucose. J Nucl Med 1991;32:673–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valkema, R., van Eck-Smit, B.L.F. & van der Wall, E.E. Cardiac metabolism: A technical spectrum of modalities including positron emission tomography, single-photon emission computed tomography, and magnetic resonance spectroscopy. J Nucl Cardiol 1, 546–560 (1994). https://doi.org/10.1007/BF02939978

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02939978

Key Words

Navigation