Skip to main content

SPECT and PET Myocardial Perfusion Imaging: Tracers and Techniques

  • Chapter
  • First Online:
Atlas of Nuclear Cardiology

Abstract

The application of a radiotracer technique to measure physiologic parameters, such as pulmonary circulation, dates back to 1927. Despite considerable advances in the application of radiotracer technique for interrogating physiologic and pathophysiologic cardiopulmonary conditions in the early twentieth century, the spatial resolution of the scintigraphic instruments used to measure tracer concentration in the heart, lungs, and blood was limited. The advent of single-photon emission CT (SPECT) in the late 1970s and positron emission tomography (PET) in the 1980s dramatically changed the clinical utility of radiotracer technique for the assessment of myocardial perfusion, viability, and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. AHA Writing Group on myocardial segmentation and registration for cardiac imaging. Circulation. 2002;105:539–42.

    Article  PubMed  Google Scholar 

  2. Dilsizian V, Rocco TP, Freedman NM, et al. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med. 1990;323:141–6.

    Article  PubMed  CAS  Google Scholar 

  3. Maddahi J, Van Train K, Prigent F, et al. Quantitative single photon emission computed thallium-201 tomography for detection and localization of coronary artery disease: optimization and prospective validation of a new technique. J Am Coll Cardiol. 1989;14:1689–995.

    Article  PubMed  CAS  Google Scholar 

  4. Fintel DJ, Links JM, Brinker JA, et al. Improved diagnostic performance of exercise thallium-201 single photon emission computed tomography over planar imaging in the diagnosis of coronary artery disease: a receiver operating characteristic analysis. J Am Coll Cardiol. 1989;13:600–8.

    Article  PubMed  CAS  Google Scholar 

  5. Iskandrian AS, Heo J, Kong B, et al. Effect of exercise level on the ability of thallium-201 tomographic imaging in detecting coronary artery disease: analysis of 461 patients. J Am Coll Cardiol. 1989;14:1477–82.

    Article  PubMed  CAS  Google Scholar 

  6. Go RT, Marwick TH, MacIntyre WJ, et al. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med. 1990;31:1899–905.

    PubMed  CAS  Google Scholar 

  7. Mahmarian JJ, Boyce TM, Goldberg RK, et al. Quantitative exercise thallium-201 single photo emission computed tomography for the enhanced diagnosis of ischemic heart disease. J Am Coll Cardiol. 1990;15:318–23.

    Article  PubMed  CAS  Google Scholar 

  8. Van Train KF, Maddahi J, Berman DS, et al. Quantitative analysis of tomographic stress thallium-201 myocardial scintigrams: a multicenter trial. J Nucl Med. 1990;31:1168–77.

    PubMed  Google Scholar 

  9. Kiat H, Maddahi J, Roy L, et al. Comparison of technetium 99m methoxy isobutyl isonitrile and thallium-201 for evaluation of coronary artery disease by planar and tomographic methods. Am Heart J. 1989;117:111–7.

    Article  Google Scholar 

  10. Iskandrian AS, Heo J, Long B, et al. Use of technetium-99m isonitrile (RP-30A) in assessing left ventricular perfusion and function at rest and during exercise in coronary artery disease, and comparison with coronary arteriography and exercise thallium-201 SPECT imaging. Am J Cardiol. 1989;64:270–8.

    Article  PubMed  CAS  Google Scholar 

  11. Kahn JK, McGhie I, Akers MS, et al. Quantitative rotational tomography 201Tl and 99mTc 2-methoxly-isobutyl-isonitrile. Circulation. 1989;79:1282–9.

    Article  PubMed  CAS  Google Scholar 

  12. Solot G, Hermans J, Merlo P, et al. Correlation of 99Tcm-sestamibi SPECT with coronary angiography in general hospital practice. Nucl Med Commun. 1993;14:23–8.

    Article  PubMed  CAS  Google Scholar 

  13. Van Train KF, Garcia EV, Maddahi J, et al. Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99m-sestamibi myocardial tomograms. J Nucl Med. 1994;35:609–15.

    PubMed  Google Scholar 

  14. Azzarelli S, Galassi AR, Foti R, et al. Accuracy of 99m-tetrofosmin myocardial tomography in the evaluation of coronary artery disease. J Nucl Cardiol. 1999;6:183–91.

    Article  PubMed  CAS  Google Scholar 

  15. Ritchie JL, Bateman TM, Bonow RO, et al. Guidelines for the clinical use of cardiac radionuclide imaging: a report of the ACC/AHA Task Force on assessment of diagnostic and therapeutic procedures. J Am Coll Cardiol. 1995;25:521–47.

    Article  PubMed  CAS  Google Scholar 

  16. Gibson RS, Watson DD, Craddock GB, et al. Predication of cardiac events after uncomplicated myocardial infarction: a prospective study comparing predischarge exercise thallium-201 scintigraphy and coronary angiography. Circulation. 1983;68:321–36.

    Article  PubMed  CAS  Google Scholar 

  17. Kiat H, Berman DS, Maddahi J, et al. Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol. 1988;12:1456–63.

    Article  PubMed  CAS  Google Scholar 

  18. Cloninger KG, DePuey EG, Garcia EV, et al. Incomplete redistribution in delayed thallium-201 single photon emission computed tomographic (SPECT) images: an overestimation of myocardial scarring. J Am Coll Cardiol. 1988;12:955–63.

    Article  PubMed  CAS  Google Scholar 

  19. Dilsizian V. Thallium-201 scintigraphy: experience of two decades. In: Dilsizian V, editor. Myocardial viability: a clinical and scientific treatise. Armonk: Futura; 2000. p. 265–313.

    Google Scholar 

  20. Zimmermann R, Mall G, Rauch B, et al. Residual Tl-201 activity in irreversible defects as a marker of myocardial viability: clinicopathological study. Circulation. 1995;91:1016–21.

    Article  PubMed  CAS  Google Scholar 

  21. Kayden DS, Sigal S, Soufer R, et al. Thallium-201 for assessment of myocardial viability: quantitative comparison of 24-hour redistribution imaging with imaging after reinjection at rest. J Am Coll Cardiol. 1991;18:1480–6.

    Article  PubMed  CAS  Google Scholar 

  22. Kitsiou AN, Srinivasan G, Quyyumi AA, et al. Stress-induced reversible and mild-to-moderate irreversible thallium defects: are they equally accurate for predicting recovery of regional left ventricular function after revascularization? Circulation. 1998;98:501–8.

    Article  PubMed  CAS  Google Scholar 

  23. Petretta M, Cuocolo A, Bonaduce D, et al. Prognostic value of thallium reinjection after stress-redistribution imaging in patients with previous myocardial infarction and left ventricular dysfunction. J Nucl Med. 1997;38:195–200.

    PubMed  CAS  Google Scholar 

  24. Arrighi JA, Dilsizian V. Identification of viable, nonfunctioning myocardium. In: Brown DL, editor. Cardiac intensive care. Philadelphia: WB Saunders; 1998. p. 307–27.

    Google Scholar 

  25. Gioia G, Milan E, Giubbini R, et al. Prognostic value of tomographic rest-redistribution thallium-201 imaging in medically treated patients with coronary artery disease and left ventricular dysfunction. J Nucl Cardiol. 1996;3:150–6.

    Article  PubMed  CAS  Google Scholar 

  26. Gioia G, Powers J, Heo J, Iskandrian AS. Prognostic value of rest-redistribution tomographic thallium-201 imaging in ischemic cardiomyopathy. Am J Cardiol. 1995;75:759–62.

    Article  PubMed  CAS  Google Scholar 

  27. Pagley PR, Beller GA, Watson DD, et al. Improved outcome after coronary artery bypass surgery in patients with ischemic cardiomyopathy and residual myocardial viability. Circulation. 1997;95:793–800.

    Article  Google Scholar 

  28. Piwnica-Worms D, Chiu ML, Kronauge JF, et al. Divergent kinetics of 201Tl and 99mTc-SESTAMIBI in cultured chick ventricular myocytes during ATP depletion. Circulation. 1992;85:1531–41.

    Article  PubMed  CAS  Google Scholar 

  29. Narahara KA, Vilaneuva-Meyer J, Thompson CJ, et al. Comparison of thallium-201 and technetium-99m hexakis 2-methoxyisobutyl isonitrile single-photon emission computed tomography for estimating the extent of myocardial ischemia and infarction in coronary artery disease. Am J Cardiol. 1990;66:1438–44.

    Article  PubMed  CAS  Google Scholar 

  30. Leon AR, Eisner RL, Martin SE, et al. Comparison of single-photon emission computed tomographic (SPECT) myocardial perfusion imaging with thallium-201 and technetium-99m sestamibi in dogs. J Am Coll Cardiol. 1992;20:1612–25.

    Article  PubMed  CAS  Google Scholar 

  31. Li QS, Solot G, Frank TL, et al. Myocardial redistribution of technetium-99m-methoxyisobutyl isonitrile (sestamibi). J Nucl Med. 1990;31:1069–76.

    PubMed  CAS  Google Scholar 

  32. Dilsizian V, Arrighi JA, Diodati JG, et al. Myocardial viability in patients with chronic coronary artery disease: comparison of 99mTc-sestamibi with thallium reinjection and 18F-fluorodeoxyglucose. Circulation. 1994;89:578–87.

    Article  PubMed  CAS  Google Scholar 

  33. Franceschi M, Guimond J, Zimmerman RE, et al. Myocardial clearance of Tc-99m hexakis-2-methoxy-2-methylpropyl isonitrile (MIBI) in patients with coronary artery disease. Clin Nucl Med. 1990;15:307–12.

    Article  PubMed  CAS  Google Scholar 

  34. Bisi G, Sciagra R, Santoro GM, et al. Technetium-99m-sestamibi imaging with nitrate infusion to detect viable hibernating myocardium and predict postrevascularization recovery. J Nucl Med. 1995;36:1994–2000.

    PubMed  CAS  Google Scholar 

  35. Mehry Y, Latour JG, Arsenault A, Rousseau G. Effect of coronary reperfusion on technetium-99m methoxyisobutylisonitrile uptake by viable and necrotic myocardium in the dog. Eur J Nucl Med. 1992;19:503–10.

    Google Scholar 

  36. Udelson JE, Coleman PS, Metherall JA, et al. Predicting recovery of severe regional ventricular dysfunction: comparison of resting scintigraphy with 201Tl and 99mTc-sestamibi. Circulation. 1994;89:2552–61.

    Article  PubMed  CAS  Google Scholar 

  37. Delbeke D, Videlefsky S, Patton JA, et al. Rest myocardial perfusion/metabolism imaging using simultaneous dual-isotope acquisition SPECT with technetium-99m-MIBI/fluorine-18-FDG. J Nucl Med. 1995;36:2110–9.

    PubMed  CAS  Google Scholar 

  38. Dilsizian V, Bacharach SL, Beanlands SR, Bergmann SR, Delbeke D, Fischman AJ, Gropler RJ, Knuuti J, Schelbert H, Travin M. ASNC imaging guidelines for nuclear cardiology procedures: PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol. 2009;16(4):651. doi:10.1007/s12350-009-9094-9.

    Article  Google Scholar 

  39. Schindler TH, Quercioli A, Schelbert HR, Dilsizian V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging. 2010;3:623–40.

    Article  PubMed  Google Scholar 

  40. Schindler TH, Valenta I, Dilsizian V. PET assessment of myocardial perfusion. In: Dilsizian V, Pohost GM, editors. Cardiac CT, PET, and MR. 2nd ed. Chichester: Wiley-Blackwell; 2009. p. 95–117.

    Google Scholar 

  41. Lodge MA, Braess H, Mahmood F, et al. Developments in nuclear cardiology: transition from SPECT to PET/CT. J Invasive Cardiol. 2005;17:491–6.

    PubMed  Google Scholar 

  42. Goldstein RA, Mullami NA, Fisher D, Marani S, Gould K, O’Brien HA. Myocardial perfusion with rubidium-82. II. The effects of metabolic and pharmacologic interventions. J Nucl Med. 1983;24:907–15.

    PubMed  CAS  Google Scholar 

  43. Yoshida K, Mullami NA, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med. 1996;37:1701–12.

    PubMed  CAS  Google Scholar 

  44. Gould K. Does coronary flow trump coronary anatomy? JACC Cardiovasc Imaging. 2009;2:1009–23.

    Article  PubMed  Google Scholar 

  45. Ziadi MC, DeKemp RA, Williams KA, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol. 2011;58:740–8.

    Article  PubMed  Google Scholar 

  46. Iida H, Rhodes CG, de Silva R, et al. Myocardial tissue fraction: correction of partial volume effects and measure of tissue viability. J Nucl Med. 1991;32:2169–75.

    PubMed  CAS  Google Scholar 

  47. Bergmann SR, Herrero P, Markham J, et al. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol. 1989;14:639–52.

    Article  PubMed  CAS  Google Scholar 

  48. Yamamoto Y, de Silva R, Rhodes CG, et al. A new strategy for the assessment of viable myocardium and regional myocardial blood flow using 15O-water and dynamic positron emission tomography. Circulation. 1992;86:167–78.

    Article  PubMed  CAS  Google Scholar 

  49. Kitsiou AN, Bacharach SL, Bartlett ML, et al. 13N-ammonia myocardial blood flow and uptake: relation to functional outcome of asynergic regions after revascularization. J Am Coll Cardiol. 1999;33:678–86.

    Article  PubMed  CAS  Google Scholar 

  50. Herzog BA, Husmann L, Valenta I, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography. J Am Coll Cardiol. 2009;54:150–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dilsizian, V., Dilsizian, V. (2013). SPECT and PET Myocardial Perfusion Imaging: Tracers and Techniques. In: Dilsizian, V., Narula, J. (eds) Atlas of Nuclear Cardiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5551-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5551-6_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5549-3

  • Online ISBN: 978-1-4614-5551-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics