Skip to main content
Log in

Genetic engineering of polyamine and carbohydrate metabolism for osmotic stress tolerance in higher plants

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Plant growth and productivity are greatly affected by various stress factors. The molecular mechanisms of stress tolerance in plant species have been well established. Metabolic pathways involving the synthesis of metabolites such as polyamines, carbohydrates, proline and glycine betaine have been shown to be associated with stress tolerance. Introduction of the stress-induced genes involved in these pathways from tolerant species to sensitive plants seems to be a promising approach to confer stress tolerance in plants. In cases where single gene is not enough to confer tolerance, metabolic engineering necessitates the introduction of multiple transgenes in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams P, Vemon D M, Thomas J C, Bohnert H J and Jenson R G 1992 Distinct cellular and organismic response to salt stress;Plant Cell Physiol. 33, 1215–1223

    CAS  Google Scholar 

  • Altman A, Friedman R, Amir D and Levin N 1982 Polyamine effects and metabolism in plants under stress conditions; inPlant growth substances (ed.) P F Wareing (London: Academic Press) pp 483–494

    Google Scholar 

  • Anderson S E, Bastola D R and Minocha S C 1998 Metabolism of polyamines in transgenic cells of carrot expressing a mouse omithine decarboxylase cDNA;Plant Physiol. 116 299–307

    Article  Google Scholar 

  • Aono M, Kubo A, Saji H, Tanaka K and Kondo N 1993 Enhanced tolerance to photooxidative stress of transgenicNicotiana tabacum with high chloroplastic glutathione reductase activity;Plant Cell Physiol. 34 129–135

    CAS  Google Scholar 

  • Bartels D and Nelson D 1994 Approaches to improve stress tolerance using molecular genetics;Plant Cell Environ. 17 659–667

    Article  CAS  Google Scholar 

  • Bartels D, Schineider K, Terstappen G, Piatkowski D and Salamini F 1990 Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plantCraterostigma plastagineum;Planta 181 27–34

    Article  CAS  PubMed  Google Scholar 

  • Bartels D, Engelhardt K, Roncarati R, Schineider K, Rotter M and Salamini F 1991 An ABA and GA modulated gene expression in barley encodes an aldose reductase related protein;EMBO J. 10 1037–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels D, Hanke C, Schneider K, Michel D and Salamini F 1992 A desiccation related Elip like gene from the resurrection plantCraterostigma plantagineum is regulated by light and ABA;EMBO J. 11 2771–2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besford R T, Richardson C, Campos J L and Tiburcio A F 1993 Effect of polyamines on stabilization of molecular complexes in the thylakoid membranes of osmotically stressed oat leaves;Planta 189 201–206

    Article  CAS  Google Scholar 

  • Bieleski R L 1982 Sugar alcohols; inEncylopedia of plant physiology, New Series, Vol. 13A,Plant carbohydrates (eds) F A Loewus and W Tanner (Berlin: Springer-Verlag) pp 158–192

    Google Scholar 

  • Bohnert H J and Jenson R G 1996 Strategies for engineering water stress tolerance in plants;TIBTECH 14 89–97

    Article  CAS  Google Scholar 

  • Bohnert H J, Vernon D M, DeRocher E J, Michalowski C B and Cushman J C 1992 Biochemistry and molecular biology of CAM; inInducible plant proteins (ed.) J L Wray (Cambridge: Cambridge University Press) pp 113–137

    Chapter  Google Scholar 

  • Bohnert H J, Nelson D E and Jenson R G 1995 Adaptations to environmental stresses;Plant Cell 7, 1099–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowler C, Van Montagu M and Inze D 1992 Superoxide dismutase and stress tolerance;Annu. Rev. Plant Physiol. Plant Mol. Biol. 40 83–116

    Article  Google Scholar 

  • Bray E A 1991 Regulation of gene expression by endogenous ABA during drought stress; inAbscisic acid physiology and biochemistry (eds) W J Davies and H G Jones (Oxford: Bioscientific Publishers) pp 81–98

    Google Scholar 

  • Bray E A 1997 Plant responses to water deficit;Trends Plant Sci. 2 48–54

    Article  Google Scholar 

  • Broeck D V, Straeter D V, Van Montagu M and Caplan A 1994 A group of chromosomal proteins is specifically released by spermine and loses DNA binding activity on phosphorylation;Plant Physiol. 106 559–566

    Article  PubMed  PubMed Central  Google Scholar 

  • Casas A M, Nelson D E, Raghothama K G, D'Urzo M P, Singh N K, Bressan R A and Hasegawa P M 1992 Expression of osmotin-like genes in the halophyteAtriplex nummularia L.;Plant Physiol. 99 329–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay M K, Gupta S, Sengupta D N and Ghosh B 1997 Expression of arginine decarboxylase in seedlings of indica rice (Orizya sativa L.) cultivars as affected by salinity stress;Plant Mol. Biol. 34 477–483

    Article  CAS  PubMed  Google Scholar 

  • Close T J, Fenton R D and Moonan F 1993 A view of plant dehydrins using antibodies specific to the carboxy-terminal peptide;Plant Mol. Biol. 23 279–286

    Article  CAS  PubMed  Google Scholar 

  • Crowe J H, Hoekshra F A and Crowe C M 1992 Anhydrobiosis;Annu. Rev. Plant Physiol. 54 579–599

    Article  CAS  Google Scholar 

  • DeScenzo R A and Minocha S C 1993 Modulation of cellular polyamines in tobacco by transfer and expression of mouse ornithine decarboxylase cDNA;Plant. Mol. Biol. 22 113–127

    Article  CAS  PubMed  Google Scholar 

  • Dixon R A and Amtzen C J 1997 Transgenic plant technology is entering the era of metabolic engineering;TIBTECH 15 441–444

    Article  CAS  Google Scholar 

  • Dure L 1992 The LEA proteins of higher plants; inControl of plant gene expression (ed.) D P S Verma (Boca Raton: CRC press) pp 325–335

    Google Scholar 

  • Dure L 1993 A repeating 11-mer amino acid motif and plant dessication;Plant J. 3 363–369

    Article  CAS  PubMed  Google Scholar 

  • Dure L, Crouch M, Harada J, Ho T H, Mundy J, Quatrano R, Thomas T and Sung Z R 1989 Common amino acid sequence domains among the LEA proteins of higher plants;Plant Mol. Biol. 12 475–486

    Article  CAS  PubMed  Google Scholar 

  • Evans P T and Malmberg R L 1989 Do polyamines have roles in plant development?;Annu. Rev. Plant Physiol. Plant Mol. Biol. 40 235–269

    Article  CAS  Google Scholar 

  • Flores H E, Protacio C M and Signs M W 1989 Primary and secondary metoabolism of polyamines in plants; inPlant nitrogen metabolism (eds) J E Poulfon, J T Romese and E E Cohn (New York: Plenum) 23 329–393

    Google Scholar 

  • Galston A W and Kaur-Sawhney R 1990 Polymines in plant physiology;Plant Physiol. 94 406–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy C L 1990 Cold acclimation and freezing stress tolerance. Role of protein metabolism;Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 187–223

    Article  CAS  Google Scholar 

  • Hamill J D, Robins R J, Parr A J, Evans D M, Furze J M and Rhodes M J C 1990 Overexpression of a yeast ornithine decarboxylase gene in transgenic roots ofNicotiana rustica can lead to enhanced nicotine accumulation;Plant Mol. Biol. 15 27–38

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Alia Mustardy L, Deshuium B, Lad M and Murata N 1997 Transformation ofArabidopsis thaliana with the cod A gene for choline oxidase accumulation of glycine betaine and enhanced tolerance to salt and cold stress;Plant J. 12 133–142

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T and Kumashiro T 1994 Efficient transformation of rice (Oryza sativa L.) mediated byAgrobacterium and sequence analysis of the boundaries of the T-DNA;Plant J. 6 271–282

    Article  CAS  PubMed  Google Scholar 

  • Holmstrom K O, Welin B, Mandal A, Kristiansdottir I, Teeri T H, Trond L, Storm A R and Palva E T 1994 Production of theE. coli betaine aldehyde dehydrogenase, an enzyme required for the synthesis of the osmoprotectant glycine betaine in transgenic plants;Plant J. 6 749–758

    Article  CAS  PubMed  Google Scholar 

  • Hong B, Uknes S J and Ho T H 1988 Cloning and characterisation of cDNA encoding a mRNA rapidly induced by ABA in barely aleurone layers;Plant. Mol. Biol. 1 495–506

    Article  Google Scholar 

  • Imai R, Chang L, Ohta A, Bray E A and Takagi M 1996 A Lea class 3 gene of tomato confers salt and freezing tolerance when overexpressed inSaccharomyces cerevisiae;Gene 170 243–248

    Article  CAS  PubMed  Google Scholar 

  • Ingrid M M, Ebskamp M J M, Visser R G F, Weisbeak P J and Smeekens S C M 1994 Fructan as a new carbohydrate sink in transgenic potato plants;Plant Cell 6 561–570

    Article  Google Scholar 

  • Kavi Kishore P B K, Hong Z, Miao G H, Hu C A and Verma D P S 1995 Overexpression of pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants;Plant Physiol. 108 1387–1394

    Article  Google Scholar 

  • Kumar A, Taylor M A, Arif S A M and Davies H V 1996 Potato plants expressing antisense and sense S-adenosyl methionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes:Plant J. 9 147–158

    Article  CAS  Google Scholar 

  • Kumar A, Altabella T, Taylor N A and Tiburcio A F 1997 Recent advances in polyamines research;Trends Plant Sci. 2 124–130

    Article  Google Scholar 

  • Lang V and Plava T E 1992 The expression of a rab related gene, rab 18, is induced by abscisic acid during the cold acclimation process ofArabidopsis thaliana (L). Heynh;Plant. Mol. Biol. 20 951–962

    Article  CAS  PubMed  Google Scholar 

  • Levit J 1980Response of plants to environmental stresses Vol I and II (New York: Academic Press)

    Google Scholar 

  • Liluis G, Holmberg N and Bulow L 1996 Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase;Biotechnology 14 177–180

    Google Scholar 

  • Loewus F A and Dickinson D B 1982 Cyclitols; inEncyclopedia of plant physiology, New Series 13APlant carbohydrates (eds) F A Loewus and W Tanner (Berlin: Springer-Verlag) pp 158–192

    Google Scholar 

  • Masgrau C, Altabella T, Fareas R, Flores D, Thompson A J, Besford R T and Tiburcio A F 1997 Inducible overexpression of oat arginine decarboxylase in transgenic tobacco plants;Plant J. 11 465–473

    Article  CAS  PubMed  Google Scholar 

  • McCue K F and Hanson A D 1990 Drought and salt tolerance: towards understanding and application;TIBTECH 8 358–362

    Article  CAS  Google Scholar 

  • McKersie B D, Bowley S R, Harjanto E and Leprince O 1996 Water-deficit tolerance and field performance of transgenic alfalfa over expressing superoxide dismutase;Plant Physiol. 111 1177–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata N 1992 Genetically engineered alteration in the chilling sensitivity of plants;Nature (London) 356 710–713

    Article  CAS  Google Scholar 

  • Nam K H, Lee S H and Lee J N 1997 Differential expression of the ADC mRNA during development and upon acid stress in soyabean (Glycine max) hypocotyls;Plant Cell Physiol. 38 1156–1166

    Article  CAS  PubMed  Google Scholar 

  • Noh E and Minocha S C 1994 Expression of a human S-adenosyl-methionine decarboxylase cDNA in transgenic tobacco and its effects on polyamine biosynthesis;Transgenic Res. 3 26–35

    Article  CAS  PubMed  Google Scholar 

  • O'Connell M A 1994 Heat shock proteins and thermotolerance; inStress induced gene expression in plants (ed.) A S Basra (Chur: Hardwood Academic Publisher) pp 163–184

    Google Scholar 

  • Pallock C J and Cairns A J 1991 Fructan metabolism in grasses and cereals;Annu. Rev. Plant Physiol. Plant Mol. Biol. 42 77–101

    Article  Google Scholar 

  • Perl A, Perl Trenes R, Galili S, Aviv D, Shalgi E, Malkin S and Calun E 1993 Enhanced oxidative stress defense in transgenic plants expressing tomato Cu, Zn superoxide dismutases;Theo. Appl. Genet. 85 568–576

    Article  CAS  Google Scholar 

  • Pilon-Smits E A H, Ebskamp M J M, Paul M J, Leprine M J N, Weisbeek P J and Smeekens S C M 1995 Improved performance of transgenic fructan-accumulating tobacco under drought stress;Plant Physiol. 107 125–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitcher L H, Brennan E, Hurlay A, Dunsmuir P, Tepperman J M and Zilinskas B A 1991 Overproduction of petunia Copper/Zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco;Plant Physiol. 97 452–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pontis H G and del Campillo E 1985 Fructans; inBiochemistry of storage carbohydrates in green plants (eds) P M Dey and R A Dixon (London: Academic Press) pp 205–227

    Google Scholar 

  • Rajam M V 1997 Polyamines; inPlant ecophysiology (ed.) M N V Prasad (New York: John Wiley) pp 343–374

    Google Scholar 

  • Rajam M V, Weinstein L H and Galston A W 1985 Prevention of a plant disease by specific inhibition of fungal polyamine biosynthesis;Proc. Natl. Acad. Sci. USA 82 6874–6878

    Article  CAS  PubMed  Google Scholar 

  • Rathinasabapathi B, McCue K F, Gage D A and Hanson A D 1994 Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance;Planta 193 155–162

    Article  CAS  PubMed  Google Scholar 

  • Richardson M, Valdes-Rodrignez S and Biancho-Labra A 1987 A possible function for thaumatin and a TMV-protein suggested by homology to a maize bifunctional enzyme inhibitor;Nature (London) 327 432–436

    Article  Google Scholar 

  • Rudulier D L, Strom A R, Dandekar A M, Switch L T and Valentine 1984 Molecular biology of osmoregulation;Science 224 1064–1068

    Article  PubMed  Google Scholar 

  • Sengupta A, Heinen J L, Holaday A S, Barke J J and Allen R D 1993 Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase;Proc. Natl. Acad. Sci. USA 90 1629–1633

    Article  CAS  Google Scholar 

  • Shavelena E, Chamara W, Bohnert H J and Jenson R G 1997 Increased salt and drought tolerance by D-ononitol production in transgenicNicotiana tabacum L.;Plant Physiol. 115 1211–1219

    Article  Google Scholar 

  • Shen B, Jensen R G and Bohnert H J 1997 Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts;Plant Physiol. 113 1177–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K and Yamaguchi-Shinozaki K 1996 Molecular responses to drought and cold stress;Curr. Opin. Biotechnol. 7 161–167

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K and Yamaguchi-Shinozaki K 1997 Gene expression and signal transduction in water-stress response.Plant Physiol. 115 327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skriver K and Mundy J 1990 Gene expression in response to abscisic acid and osmotic stress;Plant Cell 2 503–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slocum R D, Kaur-Sawhney R and Galston A W 1984 The physiology and biochemistry of polyamines in plants;Arch. Biochem. Biophys. 235 283–303

    Article  CAS  PubMed  Google Scholar 

  • Smart C C and Flores H E 1997 Overexpression of D-myo inositol-3-phosphate synthase leads to elevated levels of inositol inArabidopsis;Plant Mol. Biol. 33 814–820

    Google Scholar 

  • Smith T A 1985 Polyamines;Annu. Rev. Plant Physiol. 36 117–143

    Article  CAS  Google Scholar 

  • Szoke A, Miao G H, Hong Z and Verma D P S 1997 Subcellular location of pyrroline-5-carboxylate reductase in root nodule and leaf of soybean;Plant Physiol. 99 1642–1649

    Article  Google Scholar 

  • Tarczynski M C and Bohnert H J 1993 Stress protection of the osmolyte mannitol;Science 259 508–510

    Article  CAS  PubMed  Google Scholar 

  • Tarczynski M C, Jehsen R G and Bohnert H J 1992 Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumlation of mannitol;Proc. Natl. Acad. Sci. USA 89 2600–2604

    Article  CAS  PubMed  Google Scholar 

  • Tepperman J M and Dunsmuir P 1990 Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity;Plant Mol. Biol. 14 501–511

    Article  CAS  PubMed  Google Scholar 

  • Thomas J C, Sepahi M and Bohnert H J 1995 Enhancement of seed germination in high salinity by engineering mannitol-expression inArabidopsis thaliana;Plant Cell Environ. 18 801–806

    Article  CAS  Google Scholar 

  • Thomshow M F 1990 Molecular genetics of cold acclimatisation in higher plants;Adv. Genet. 28 99–131

    Article  Google Scholar 

  • Tiburcio A F, Campos J L, Figueras X and Besford R T 1993 Recent advances in the understanding of polyamine functions during plant development;Plant Growth Regul. 12 331–340

    Article  CAS  Google Scholar 

  • Tiburcio A F, Besford R T, Capell T, Borell A, Testillano P S and Risueno M C 1994 Mechanism of polyamine action during senescence responses induced by osmotic stress;J. Exp. Bot. 45 1789–1800

    Article  CAS  Google Scholar 

  • Vernon D M and Bohnert H J 1992 A novel methyltransferase induced by osmotic stress in the facultative halophyteMesembryanthemum crystalinum;EMBO J. 11 2077–2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walden R, Cordevio A and Tiburcio A F 1997 Polyamines: small molecules triggering pathways in plant growth and development;Plant Physiol. 113 1009–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho TH and Wu R 1996 Expression of a late embryogenesis abundant protein gene HVA1 from barley confers tolerance to water deficit and salt stress in transgenic rice;Plant Physiol. 110 249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav J S and Rajam M V 1997 Spatial distribution of free and conjugated polyamines in leaves ofSolanum melongena L. associated with differential morphogenetic capacity; efficient somatic embryogenesis with putrescine;J. Exp. Bot. 48 135–141

    Article  Google Scholar 

  • Yadav J S and Rajam M V 1998 Temporal regulation of somatic embryogenesis by adjusting cellular polyamine content in eggplant;Plant Physiol. 116 617–625

    Article  CAS  Google Scholar 

  • Yamada S, Katsuhara M, Kelly W B, Michalowski C B and Bohnert H J 1995 A family of transcripts encoding water channel proteins: tissue specific expression in the common ice plant;Plant Cell 7 1129–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yancey P H, Clark M E, Hand S C, Bowlus P D and Somero G N 1982 Living with water stress: evolution of osmolyte systems;Science 217 1214–1217

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M V Rajam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajam, M.V., Dagar, S., Waie, B. et al. Genetic engineering of polyamine and carbohydrate metabolism for osmotic stress tolerance in higher plants. J. Biosci. 23, 473–482 (1998). https://doi.org/10.1007/BF02936141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02936141

Keywords

Navigation