Skip to main content
Log in

Cloning ofCandida boidinii DNA fragments promoting autonomous replication of plasmids inSaccharomyces cerevisiae

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Fragments ofCandida boidinii chromosomal DNA were inserted into the integrative vector YIp-kanr and examined for the presence of sequences promoting autonomous replication of plasmids inSaccharomyces cerevisiae. Restriction maps of two plasmids, designated S6/4 and S6/5, originating from the sameS. cerevisiae transformant, were constructed. Southern hybridization data confirmed that the plasmids carry sequences from theC. boidinii chromosome. Both plasmids transformS. cerevisiae strains at 4–5-fold higher frequency than cloning vectors based on the replication origin of the 2μm plasmid. Mitotic stability of the constructed plasmids is similar to that of the 2μ-based vector pNF2 inS. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthony C.:The Biochemistry of Methylotrophs. Academic Press, New York 1982.

    Google Scholar 

  • Beggs J.D.: Gene cloning in yeast, pp. 175–203, in: R. Williamson (Ed.):Genetic Engineering II. Academic Press, New York 1981.

    Google Scholar 

  • Cashmore A.M., Alburg M.S., Hadfield G., Meacock P.A.: Genetic analysis of partitioning functions encoded by the 2μm circle ofSaccharomyces cerevisiae.Mol.Gen.Genet. 203, 154–162 (1986).

    Article  CAS  Google Scholar 

  • Cregg J.M., Barringer K.J., Hessler A.Y., Madden K.R.:Pichia pastoris as a host system for transformation.Mol.Cell.Biol. 12, 3376–3385 (1985).

    Google Scholar 

  • Cryer D.R., Eccleshall R., Marmur J.: Isolation of yeast DNA, pp. 39–44 in D.M. Prescott (Ed.):Methods in Cell Biology, Vol. XII. Academic Press, New York 1975.

    Google Scholar 

  • Dagert M., Ehrlich S.D.: Prolonged incubation in calcium chloride improves the competence ofEscherichia coli cells.Gene 6, 23–28 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Gleeson M.A., Ortori G.S., Sudbery P.E.: Transformation of the methylotrophic yeastHansenula polymorpha.J.Gen.Microbiol. 132, 3459–3465 (1986).

    CAS  Google Scholar 

  • Hadfield C., Jordan B.E., Mount R.C., Pretorius G.H.J., Burak E.: G418-resistance as a dominant marker and reporter gene for gene expression inSaccharomyces cerevisiae.Curr.Genet. 18, 303–313 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Hicks J.B., Hinnen A., Fink G.R.: Properties of yeast transformation.Cold Spring Harbor Symp. 43, 1305–1313 (1978).

    Google Scholar 

  • Hoffman C.S., Winston F.: A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation ofE. coli.Gene 57, 267–272 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Hsu W.H., Magee P.T., Magee B.B., Reddy C.A.: Construction of a new yeast cloning vector containing autonomous replication sequences fromCandida utilis.J.Bacteriol. 154, 1033–1039 (1983).

    PubMed  CAS  Google Scholar 

  • Ish-Horowicz D., Burke J.F.: Rapid and efficient cosmid vector cloning.Nucl.Acids Res. 9, 2989–2998 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Jimenez A., Davies J.: Expression of a transposable antibiotic resistance element inSaccharomyces.Nature 287, 869–871 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Kawamura M., Takagi M., Yano K.: Cloning of aLEU gene and an ARS site ofCandida maltosa.Gene 24, 157–162 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Kurtz M.B., Cortelyon M.W., Kirsch D.R.: Integrative transformation ofCandida albicans, using a clonedCandida ADE2 gene.Mol.Cell.Biol. 6, 142–149 (1986).

    PubMed  CAS  Google Scholar 

  • Lang-Hinrichs C., Berndorff D., Seefeldt G., Stahl U.: G418 resistance in the yeastSaccharomyces cerevisiae: comparison of the neomycin resistance genes from Tn5 and Tn903.Appl.Microbiol.Biotechnol. 30, 388–394 (1989).

    Article  CAS  Google Scholar 

  • Maniatis T., Fritsch E.F., Sambrook J.:Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, New York 1982.

    Google Scholar 

  • Naumovski L., Friedberg E.: Construction of plasmid vectors that facilitate subcloning and recovery of yeast andEscherichia coli DNA fragments.Gene 22, 203–209 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Rao T.R., Reddy C.A.: A YIp5-kanr plasmid useful for isolating ars from yeast and other eukaryotes based on G418 resistance selection.Nucl. Acids Res. 14, 7504 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Rigby P.W.J., Dieckmann M., Rhodes C., Berg P.: Labelling deoxyribonucleic acid to high specific activityin vitro by nick translation with DNA polymerase I.J.Mol.Biol. 113, 237–251 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Roggenkamp R., Hansen H., Eckhart M., Janowicz Z., Hollenberg C.P.: Transformation of the methylotrophic yeast Hansenula polymorpha by autonomous replication and integration vectors.Mol.Gen.Genet. 202, 302–308 (1986).

    Article  CAS  Google Scholar 

  • Sakai K., Sakaguchi J., Yamamoto M.: High-frequency cotransformation by copolymerization of plasmids in the fission yeastSchizosaccharomyces pombe.Mol.Cell.Biol. 4, 651–656 (1984).

    PubMed  CAS  Google Scholar 

  • Sibson D.R., Hughes S.G., Bryant J.A., Fitchett P.N.: Characterization of sequences from rape (Brassica napus) nuclear DNA which facilitate autonomous replication of plasmids in yeast.J.Exp.Bot. 39, 795–802 (1988).

    Article  CAS  Google Scholar 

  • Southern E.M.: Detection of specific sequences among DNA fragments separated by gel electrophoresis.J.Mol.Biol. 98, 503–517 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Stinchcomb D.T., Thomas M., Kelly J., Selker E., Davis R.W.: Eukaryotic DNA segments capable of autonomous replication in yeast.Proc.Nat.Acad.Sci.USA 77, 4559–4563 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Struhl K., Stinchcomb D.T., Scherer S., Davis R.W.: High frequency transformation of yeast: autonomous replication of hybrid DNA molecules.Proc.Nat.Acad.Sci. USA 76, 1035–1039 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Svoboda A., Piedra D.: Reversion of yeast protoplasts in media containing polyethylene glycol.J.Gen.Microbiol. 129, 3371–3377 (1983).

    CAS  Google Scholar 

  • Teixeira S.M.R., Frascino A.C.S., Galembeck E.V., Azevedo M.O., Filho S.A.: Isolation ofTrypanosoma cruzi DNA fragments which function as ARS elements inSaccharomyces cerevisiae.Gene 44, 171–175 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Tikhomirova L.P., Kryukov V.M., Strizhov N.I., Bayev A.A.: mtDNA sequences ofCandida utilis capable of supporting autonomous replication of plasmids inSaccharomyces cerevisiae.Mol.Gen.Genet. 189, 479–484 (1983).

    Article  CAS  Google Scholar 

  • Tikhomirova L.P., Ikonomova R.N., Kuznetsova E.N.: Evidence for autonomous replication and stabilization of recombinant plasmids in the transformants of yeastHansenula polymorpha.Curr.Genet. 10, 741–747 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Volfová O., Pilát P.: Study of methanol-oxidizing yeast. I. Isolation and growth studies.Folia Microbiol. 19, 249–256 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janatová, I., Navrátil, O. Cloning ofCandida boidinii DNA fragments promoting autonomous replication of plasmids inSaccharomyces cerevisiae . Folia Microbiol 37, 176–180 (1992). https://doi.org/10.1007/BF02933143

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02933143

Keywords

Navigation