Skip to main content
Log in

Optimization and mathematical modeling of the transtubular bioreactor for the production of monoclonal antibodies from a hybridoma cell line

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This report describes the use of a transtubular bioreactor to study the relative effects of diffusion versus perfusion of medium on antibody production by a hybridoma cell line. The study was performed with a high-density cell culture maintained in a serum-free, low-protein medium for 77 days. It was determined that the reactor possessed a macro-mixing pattern residence time distribution similar to a continuous stirred tank reactor (CSTR). However, due to the arrangement of the medium lines in the reactor, the flow patterns for nutrient distribution consist of largely independent medium path lengths ranging from short to long. When operated with cyclic, reversing, transtubular medium flow, some regions of the reactor (with short residence times) are more accessible to medium than others (with long residence times). From this standpoint, the reactor can be divided into three regions: a captive volume, which consists of medium primarily delivered via diffusion; a lapped volume, which provides nutrients through unilateral convection; and a swept volume, which operates through bilateral convection. The relative sizes of these three volumes were modified experimentally by changing the period over which the direction of medium flow was reversed from 15 min (larger captive volume) to 9 h (larger swept volume). The results suggest that antibody concentration increases as the size of the diffusion-limited (captive) volume is increased to a maximum at around 30 min with a sharp decrease thereafter. As reflected by changes in measured consumption of glucose and production of lactate, no significant difference in cellular metabolism occurred as the reactor was moved between these different states. These results indicate that the mode of operation of the transtubular bioreactor may influence antibody productivity under serum-free, low-protein conditions with minimal effects on cellular metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reuveny, S., D. Velez, L. Miller, and J. D. Macmillan (1986) Comparison of cell propagation methods for their effect on monoclonal antibody yield in fermentors.J. Immunol. Method. 86: 61–69.

    Article  CAS  Google Scholar 

  2. Griffiths, B. Perfusion systems for cell cultivation (1990) pp. 217–250. In: A. S. Lubiniecki (ed.),Large-Scale Mammalian Cell Culture Technology, Marcel Dekker, Inc., New York, NY, USA.

    Google Scholar 

  3. Oka, M. S. and R. G. Rupp (1990) Large-scale animal cell culture: A biological perspective. pp. 71–92. In: A. S. Lubiniecki (ed.),Large-Scale Mammalian Cell Culture Technology. Marcel Dekker, Inc., New York, NY, USA.

    Google Scholar 

  4. Farrell, P. J., N. Kalogerakis, and L. A. Behie (1994) Effect of endogenous proteins on growth and antibody productivity in hybridoma batch cultures.Cytotechnology 15: 95–102.

    Article  CAS  Google Scholar 

  5. Doverskog M., J. Ljunggren, L. Ohman, and L. Haggstrom. (1997) Physiology of cultured animal cells.J. Biotechnol. 59: 103–115.

    Article  CAS  Google Scholar 

  6. Gordon, J. S. C. Ley, M. D. Melamed, P. Aman, and N. C. Hughes-Jones (1984) Soluble factor requirements for the autostimulatory growth of B lymphoblasts immortalized by Epstein-Barr virus.J. Exp. Med. 159: 1554–1559.

    Article  CAS  Google Scholar 

  7. Kawano, M., T. Hirano, T. Matsuda, T. Taga, Y. Horii, K. Iwato, H. Asaoku, B. Tang, O. Tanabe, H. Tanaka, A. Kuramoto, and T. Kishimoto (1988) Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas.Nature 332: 83–85.

    Article  CAS  Google Scholar 

  8. Kishimoto, T. (1985) Factors affecting B-cell growth and differentiation.Ann. Rev. Immunol. 3: 133–157.

    Article  CAS  Google Scholar 

  9. Mondschein, J. S., S. F. Canning, D. Q. Miller, and J. M. Hammond (1989) Insulin-like growth factors (IGFs) as autocrine/paracrine regulators of granulosa cell differentiation and growth: Studies with a neutralizing monoclonal antibody to IGF-1.Biol. Reprod. 40: 79–85.

    Article  Google Scholar 

  10. Sporn, M. B. and G. T. Todaro (1980) Autocrine secretion and malignant transformation of cells.The New England J. Med. 303: 878–880.

    CAS  Google Scholar 

  11. Weinstein, R. (1983) Serum-free Culture of Normal Mammalian Cells.BioTechniques. June/July, 61–64.

    Google Scholar 

  12. Iwasaki, T., T. Hamano, J. Fujimoto, and E. Kakishita (1998) Regulation of interleukin-6 and interleukin-6R alpha (gp80) expression by murine immunoglobulin-secreting B-cell hybridomas.Immunology 93: 498–504.

    Article  CAS  Google Scholar 

  13. Murakami, H. Serum-Free Media Used for Cultivation of Hybridomas (1989) pp. 107–141. In: A. Mizrahi (ed.),Monoclonal Antibodies: Production and Application, Alan R. Liss, Inc., New York, NY, USA.

    Google Scholar 

  14. Kidwell, W. R. (1989) Filtering Out Inhibition.Bio/Technology 7: 462–463.

    Article  CAS  Google Scholar 

  15. Halberstadt, C. R. (1990)Design, Implementation and Modeling of a Transtubular Bioreactor for the Growth of Mantmalian Cells. Ph.D. thesis, University of Michigan, Ann Arbor, MI, USA.

    Google Scholar 

  16. Ozturk, S. S., B. O. Palsson, A. R. Midgley, and C. R. Halberstadt (1989) Transtubular bioreactor: A perfusion device for mammalian cell cultivation.Biotechnol. Tech. 3: 55–60.

    Article  Google Scholar 

  17. Roy, P., J. Washizu, A. W. Tilles, M. L. Yarmush, and M. Toner (2001) Effect of flow on the detoxification function of rat hepatocytes in a bioartificial live reactor.Cell Transplant 10: 609–614.

    CAS  Google Scholar 

  18. Kaminski, M. S., K. Kitamura, D. G. Maloney, M. J. Campbell, and R. Levy (1986) Importance of antibody isotype in monoclonal anti-idiotype therapy of a murine B-cell lymphoma: A study of hybridoma class switch variance.J. Immunol. 136: 1123–1130.

    CAS  Google Scholar 

  19. Lee, G. M. (1990)Production of Monoclonal Antibody Using Free and Immobilized Hybridoma Cells, Ph.D. thesis, University of Michigan, Ann Arbor, MI, USA.

    Google Scholar 

  20. Lim, F. Microencapsulation of living mammalian cells. (1988) pp. 185–197. In: A. Mizrahi, (ed.),Upstream Processes: Equipment and Techniques, Alan R. Liss, Inc., New York, NY, USA.

    Google Scholar 

  21. Fogler, H. S. (1986)Elements of Chemical Reaction Engineering. Prentice-Hall, Englewood Cliffs, NJ, USA.

    Google Scholar 

  22. Villermaux, J. (1986) pp. 707–771 Micromixing Phenomena in Stirred Reactors. In:Encyclopedia of Fluid Mechanics, Gulf Publishing Co., Houston, TX, USA.

    Google Scholar 

  23. Yamada, K., K. Akiyoshi, H. Murakami, T. Sugahara, I. Iikeda, K. Toyoda, and H. Omura (1989) Partial purification and characterization of immunoglobulin production stimulating factor derived from namalwa cells.In Vitro Cell. Develop. Biol. 25: 243–247.

    Article  CAS  Google Scholar 

  24. Teillaud, J. L., S. Brunati, S. Amigorena, C. Mathiot, C. Sautes, and W. H. Fridman (1989) Control of B cell function by Fcγ receptor-positive T cells and immunoglobulin-binding factors.Contrib. Microbiol. Immunol. 11: 124–150.

    CAS  Google Scholar 

  25. Tanaka, K., G. Jay, and K. J. Isselbacher (1988) Expression of heat-shock and glucose-regulated genes: differential effects of glucose starvation and hypertonicity.Biochim. Biophys. Acta. 950: 138–146.

    CAS  Google Scholar 

  26. Whelan, S. A. and L. E. Hightower (1985) Differential induction of glucose-regulated and heat shock proteins: effects of pH and sulfhydryl-reducing agents on chicken embryo cells.J. Cell. Physiol. 125: 251–258.

    Article  CAS  Google Scholar 

  27. Komjati, M., P. Bratusch-Marrain, and W. Waldhausl (1986) Superior efficacy of pulsatile versus continuous hormone exposure on hepatic glucose productionin vitro.Endocrinology 118: 312–318.

    CAS  Google Scholar 

  28. McIntosh, R. P. and J. E. A. McIntosh (1985) Dynamic characteristics of luteinizing hormone release from perifused sheep anterior pituitary cells stimulated by combined pulsatile and continuous gonadotropin-releasing hormone.Endocrinology 117: 169–179.

    CAS  Google Scholar 

  29. Nordmann, J. J. and E. L. Stuenkel (1986) Electrical properties of axons and neurohypophysial nerve terminals and their relationship to secretion in the rat.J. Physiol. 380: 521–539.

    CAS  Google Scholar 

  30. Wildt, L., A. Hausler, G. Marshall, J. S. Hutchison, T. M. Plant, P. E. Belchetz, and E. Knobil (1981) Frequency and amplitude of gonadotropin-releasing hormone stimulation and gonadotropin secretion in the rhesus monkey.Endocrinology 109: 376–385.

    Article  CAS  Google Scholar 

  31. Halberstadt, C. R., R. Hardin, K. Bezverkov, D. Snyder, L. Allen, and L. Landeen (1994) Thein vitro growth of a three-dimensional human dermal replacement using a single-pass perfusion system.Biotechnol. Bioeng. 43: 740–746.

    Article  CAS  Google Scholar 

  32. Palsson, B., S. Paek, R. Schwartz, M. Palsson, G. Lee, S. Silver, and S. Emerson (1993) Expansion of human bone marrow progenitor cells in a high cell density continuous perfusion system.Bio/Technol. 11: 368–372.

    Article  CAS  Google Scholar 

  33. Arathoon, W. R. and J. R. Birch (1986) Large-scale cell culture in biotechnology.Science 232: 1390–1395.

    Article  CAS  Google Scholar 

  34. Lebherz III, W. B. (1988) Batch production of monoclonal antibody by large-scale suspension culture.Bio-Pharm February: 22–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig R. Halberstadt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halberstadt, C.R., Palsson, B.O., Midgley, A.R. et al. Optimization and mathematical modeling of the transtubular bioreactor for the production of monoclonal antibodies from a hybridoma cell line. Biotechnol. Bioprocess Eng. 7, 163–170 (2002). https://doi.org/10.1007/BF02932914

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932914

Keywords

Navigation