Skip to main content

Orbitally Shaken Single-Use Bioreactor for Animal Cell Cultivation: Fed-Batch and Perfusion Mode

  • Protocol
  • First Online:
Animal Cell Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2095))

Abstract

Increasing the cultivation volume from small to large scale can be a rather complex and challenging process when the method of aeration and mixing is different between scales. Orbitally shaken bioreactors (OSBs) utilize the same hydrodynamic principles that define the success of smaller-scale cultures, which are developed on an orbitally shaken platform, and can simplify scale-up. Here we describe the basic working principles of scale-up in terms of the volumetric oxygen transfer coefficient (kLa) and mixing time and how to define these parameters experimentally. The scale-up process from an Erlenmeyer flask shaken on an orbital platform to an orbitally shaken single-use bioreactor (SB10-X, 12 L) is described in terms of both fed-batch and perfusion-based processes. The fed-batch process utilizes a recombinant variant of the mammalian cell line, Chinese hamster ovary (CHO), to express a biosimilar of a therapeutic monoclonal antibody. The perfusion-based process utilizes either an alternating tangential flow filtration (ATF) or a tangential flow filtration (TFF) system for cell retention to cultivate an avian cell line, AGE1.CR.pIX, for the propagation of influenza A virus, H1N1, in high cell density. Based on two example cell cultivations, processes outline the advantages that come with using an orbitally shaken bioreactor for scaling-up a process. The described methods are also applicable to other suspension cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raval K, Kato Y, Büchs J (2007) Comparison of torque method and temperature method for determination of power consumption in disposable shaken bioreactors. Biochem Eng J 34(3):224–227

    Google Scholar 

  2. Büchs J, Zoels B (2011) Evaluation of maximum to specific power consumption ratio in shaking bioreactors. J Chem Eng Japan 34(5):647–653

    Article  Google Scholar 

  3. Klöckner W, Büchs J (2012) Advances in shaking technologies. Trends Biotechnol 30(6):307–314

    Article  Google Scholar 

  4. Anderlei T, Cesana C, Bürki C, De Jesus M, Kühner M, Wurm F, Lohser R (2009) Shaken bioreactors provide culture alternative. Gen Eng Biotechnol News 29:19

    Google Scholar 

  5. Raval K, Liu C-M, Büchs J (2006) Large-scale disposable shaking bioreactors. BioProcess Int 41(1):46–49

    Google Scholar 

  6. Selker M, Paldus B (2009) Single-use solutions for scale-up and technology transfer. Innov Pharm Technol:57–59

    Google Scholar 

  7. Margaritis A, Zajic JE (1978) Mixing, mass transfer, and scale-up of polysaccharide fermentations. Biotechnology and bioengineering 20:939–1001. https://doi.org/10.1002/bit.260200702

    Article  CAS  Google Scholar 

  8. Junker BH (2004) Scale-up methodologies for Escherichia coli and yeast fermentation processes. J BiosciBioeng 97(6):347–364. https://doi.org/10.1016/s1389-1723(04)70218-2

    Article  CAS  Google Scholar 

  9. Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27(2):153–176. https://doi.org/10.1016/j.biotechadv.2008.10.006

    Article  CAS  PubMed  Google Scholar 

  10. Kieran PM, Malone DM, MacLoughlin PF (2000) Effects of hydrodynamic and interfacial forces on plant cell suspension systems. Adv Biochem Eng/Biotechnol 67:139–177

    CAS  Google Scholar 

  11. Al-Sabbagh A, Olech E, McClellan JE, Kirchhoff CF (2016) Development of biosimilars. Semin Arthritis Rheumatism 45(5 Suppl):S11–S18. https://doi.org/10.1016/j.semarthrit.2016.01.002

    Article  PubMed  Google Scholar 

  12. Schiestl M, Stangler T, Torella C, Cepeljnik T, Toll H, Grau R (2011) Acceptable changes in quality attributes of glycosylated biopharmaceuticals. Nat Biotechnol 29:310–312. https://doi.org/10.1038/nbt.1839

    Article  CAS  Google Scholar 

  13. Cymer F, Beck H, Rohde A, Reusch D (2018) Therapeutic monoclonal antibody N-glycosylation – structure, function and therapeutic potential. Biologicals 52:1–11. https://doi.org/10.1016/j.biologicals.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  14. Higel F, Seidl A, Sorgel F, Friess W (2016) N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. EurJPharmBiopharm 100:94–100. https://doi.org/10.1016/j.ejpb.2016.01.005

    Article  CAS  Google Scholar 

  15. Tapia F, Vázquez-Ramírez D, Genzel Y, Reichl U (2016) Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production. Appl MicrobiolBiotechnol 100:2121–2132. https://doi.org/10.1007/s00253-015-7267-9

    Article  CAS  Google Scholar 

  16. Gallo-Ramírez LE, Nikolay A, Genzel Y, Reichl U (2015) Bioreactor concepts for cell culture-based viral vaccine production. Expert RevVaccines 14:1181–1195. https://doi.org/10.1586/14760584.2015.1067144

    Article  CAS  Google Scholar 

  17. Gutiérrez-Granados S, Gòdia F, Cervera L (2018) Continuous manufacturing of viral particles. Curr Opin Chem Eng 22:107–114. https://doi.org/10.1016/j.coche.2018.09.009

    Article  Google Scholar 

  18. Tissot S, Mickel P, Hacker DB, De Jesus M, Wurm F (2012) kLa as a predictor for successful probe-independent mammalian cell bioprocesses in orbitally shaken bioreactors. New Biotechnol 29(3):387–394. https://doi.org/10.1016/j.nbt.2011.10.010

    Article  CAS  Google Scholar 

  19. Meusel W, Löffelholz C, Husemann U, Dreher T, Greller G, Kauling J, Eibl D, Kleebank S, Bauer I, Glöckler R, Huber P, Kuhlmann W, John GT, Werner S, Kaiser SC, Pörtner R, Kraume M (2016) Recommendations for process engineering characterisation of single-use bioreactors and mixing systems by using experimental methods. DECHEMA

    Google Scholar 

  20. Löffelholz C, Husemann U, Greller G, Meusel W, Kauling J, Ay P, Kraume M, Eibl R, Eibl D (2012) Bioengineering parameters for single-use bioreactors: overview and evaluation of suitable methods - Löffelholz - 2013 - Chemie Ingenieur Technik - Wiley Online Library. https://doi.org/10.1002/cite.201200125

  21. Gramer MJ, Eckblad JJ, Donahue R, Brown J, Shultz C, Vickerman K, Priem P, van den Bremer ET, Gerritsen J, van Berkel PH (2011) Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose. Biotechnol Bioeng 108(7):1591–1602. https://doi.org/10.1002/bit.23075

    Article  CAS  PubMed  Google Scholar 

  22. Vázquez-Ramírez D, Genzel Y, Jordan I, Sandig V, Reichl U (2018) High-cell-density cultivations to increase MVA virus production. Vaccine 36:3124–3133. https://doi.org/10.1016/j.vaccine.2017.10.112

    Article  CAS  PubMed  Google Scholar 

  23. Lohr V (2014) Characterization of the avian designer cells AGE1.CR and AGE1.CR.pIX considering growth, metabolism and production of influenza virus and Modified Vaccinia Virus Ankara (MVA)

    Google Scholar 

  24. Kalbfuss B, Knochlein A, Krober T, Reichl U (2008) Monitoring influenza virus content in vaccine production: precise assays for the quantitation of hemagglutination and neuraminidase activity. Biologicals 36(3):145–161

    Article  CAS  Google Scholar 

  25. Klenk HD, Rott R, Orlich M, Blodorn J (1975) Activation of influenza A viruses by trypsin treatment. Virology 68(2):426–439

    Article  CAS  Google Scholar 

  26. Seitz C, Isken B, Heynisch B, Rettkowski M, Frensing T, Reichl U (2012) Trypsin promotes efficient influenza vaccine production in MDCK cells by interfering with the antiviral host response. Appl MicrobiolBiotechnol 93(2):601–611. https://doi.org/10.1007/s00253-011-3569-8

    Article  CAS  Google Scholar 

  27. Genzel Y, Vogel T, Buck J, Behrendt I, Ramirez DV, Schiedner G, Jordan I, Reichl U (2014) High cell density cultivations by alternating tangential flow (ATF) perfusion for influenza A virus production using suspension cells. Vaccine 32:2770–2781

    Article  CAS  Google Scholar 

  28. Vázquez-Ramírez D, Jordan I, Sandig V, Genzel Y, Reichl U (2019) High titer MVA and influenza A virus production using a hybrid fed-batch/perfusion strategy with an ATF system | SpringerLink.https://doi.org/10.1007/s00253-019-09694-2

Download references

Acknowledgments

The authors thank V. Sandig (ProBioGen AG) for kindly providing the AGE1.CR.pIX cell line and I. Behrendt (MPI Magdeburg) for the excellent technical work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Bürgin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bürgin, T. et al. (2020). Orbitally Shaken Single-Use Bioreactor for Animal Cell Cultivation: Fed-Batch and Perfusion Mode. In: Pörtner, R. (eds) Animal Cell Biotechnology. Methods in Molecular Biology, vol 2095. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0191-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0191-4_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0190-7

  • Online ISBN: 978-1-0716-0191-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics