Skip to main content
Log in

A review on metabolic pathway analysis with emphasis on isotope labeling approach

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The recent progress on metabolic systems engineering was reviewed based on our recent research results in terms of (1) metabolic signal flow diagram approach, (2) metabolic flux analysis (MFA) in particular with intracellular isotopomer distribution using NMR and/or GC-MS, (3) synthesis and optimization of metabolic flux distribution (MFD), (4) modification of MFD by gene manipulation and by controlling culture environment, (5) metabolic control analysis (MCA), (6) design of metabolic regulation structure, and (7) identification of unknown pathways with isotope tracing by NMR. The main characteristics of metabolic engineering is to treat metabolism as a network or entirety instead of individual reactions. The applications were made for poly-3-hydroxybutyrate (PHB) production usingRalstonia eutropha and recombinantEscherichia coli, lactate production by recombinantSaccharomyces cerevisiae, pyruvate production by vitamin auxotrophic yeastToluropsis glabrata, lysine production usingCorynebacterium glutamicum, and energetic analysis of photosynthesic microorganisms such as Cyanobateria. The characteristics of each approach were reviewed with their applications. The approach based on isotope labeling experiments gives reliable and quantitative results for metabolic flux analysis. It should be recognized that the next stage should be toward the investigation of metabolic flux analysis with gene and protein expressions to uncover the metabolic regulation in relation to genetic modification and/or the change in the culture condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ryu, D. D. Y. and D-H. Nam (2000) Recent progress in biomolecular engineering.Biotechnol. Prog. 16: 2–6.

    Article  CAS  Google Scholar 

  2. Cameron, D. C. and I.-T. Tong (1993) Cellular and metabolic engineering an overview.Appl. Biotechnol. 38: 105–140.

    Article  CAS  Google Scholar 

  3. Bailey, J. E. (1991) Toward a science of metabolic engineering.Science 252: 1668–1675.

    Article  CAS  Google Scholar 

  4. Stephanopoulos, G. (1994) Metabolic engineeringCurr. Opinion Biotechnol, 5: 196–200.

    Article  CAS  Google Scholar 

  5. Nielsen, J. (1998) Metabolic engineering: techniques for analysis of targets for genetic manipulations.Biotechnol. Bioeng. 58: 125–132.

    Article  CAS  Google Scholar 

  6. Stephanopoulos, G. and J. J. Vallino (1991) Network rigidity and metabolic engineering in metabolite overproduction.Science 252: 1675–1681.

    Article  CAS  Google Scholar 

  7. Liao, J. C. and J. Delgado (1993) Advances in metabolic control analysis.Biotechnol. Prog. 9: 221–233.

    Article  CAS  Google Scholar 

  8. Shimizu, K. (2000) An overview on metabolic systems engineering approach and its perspectives for efficient microbial fermentation.J. Chin. Inst. Chem. Eng. 31: 429–442.

    CAS  Google Scholar 

  9. Shimizu, K. (2000) Metabolic pathway engineering: Systems analysis methods and their applications, In: J. J. Zhong (ed.).Adv. Appl. Biotechnol. ECUST in press, China.

    Google Scholar 

  10. Stephanopoulos, G. A. A. Aristidou, and J. Nielsen (1999)Metabolic Engineering: Principles and Methodorogies, Academic Press, San Diego, CA, USA

    Google Scholar 

  11. Lee, S. Y. and T. Papoutsakis eds. (1999)Metabolic Engineering, Marcel Dekker, New York, NY, USA.

    Google Scholar 

  12. Endo, I. and I. Inoue (1976) Metabolic activities of yeast cells in batch culture.Kagaku Kogaku Roubunshu 2: 416–421.

    CAS  Google Scholar 

  13. Inoue, I. and I. Endo (1973) An analysis of yeast metabolism in continuous culture.Kagaku Kogaku 37: 69–75.

    Google Scholar 

  14. Jin, S., K. Ye, and K. Shimizu (1995) Metabolic pathway analysis of recombinantSaccharomyces cerevisiae with a galactose-inducible promoter based on a signal flow modeling approach.J. Ferment. Bioeng. 80: 541–551.

    Article  CAS  Google Scholar 

  15. Majewski, R. A. and M. M Damach (1990) Simple constraine-optimization view of acetate overflow inE. coli.Biotechnol. Bioeng. 35: 732–738,

    Article  CAS  Google Scholar 

  16. Ko, Y. F., W. E. Bently, and W. A. Weigand (1993) An integrated metabolic modeling approach to describe the energy efficiency ofE. coli fermentations under oxygen- limited conditions: cellular energetics, carbon flux and acetate production.Biotechnol. Bioeng. 42: 843–853.

    Article  CAS  Google Scholar 

  17. Ko, Y. F., W. E. Bently, and W. A. Weigand (1994) A metabolic model of cellular energetics and carbon flux during aerobicE. coli fermentation.Biotechnol. Bioeng. 43: 847–855.

    Article  CAS  Google Scholar 

  18. Shi, H. and K. Shimizu (1997) An integrated metabolic pathway analysis based on metabolic signal flow diagram and cellular energetic forSaccharomyces cerevisiae.J. Ferment. Bioeng. 83: 275–280.

    Article  CAS  Google Scholar 

  19. Shi, H. and K. Shimizu (1998) On-line metabolic pathway analysis based on metabolic signal flow diagram.Biotechnol. Bioeng. 58: 141–148.

    Article  Google Scholar 

  20. Shimizu, H., K. Miura, S. Shioya, and K Suga (1995) Online state recognition in yeast fed-batch culture using error vectors.Biotechnol. Bioeng. 47: 165–173.

    Article  CAS  Google Scholar 

  21. Vallino, J. J. and G. Stephanopoulos (1993) Metabolic flux distributions inCorynebacterium glutamicum during growth and lysine overproduction.Biotechnol. Bioeng. 41: 633–646.

    Article  CAS  Google Scholar 

  22. Zupke, C. and G. Stephanopoulos (1995) Intracellular flux analysis in hybridomas using mass balances andin vitro 13C NMR.Biotechnol. Bioeng. 45: 292–303.

    Article  CAS  Google Scholar 

  23. Marx, A., A. A. de Graaf, W. Wiechert, L. Eggeling, and H. Shohm (1996) Determination of the fluxes in the central metabolism ofCorynebacterium Glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing.Biotechnol. Bioeng. 49: 111–129.

    Article  CAS  Google Scholar 

  24. Mavrovouniotis, M. L. (1989)Computer-Aided Design of Biochemical Pathways, PhD Thesis, MIT, Cambridge, MA, USA.

    Google Scholar 

  25. Pissarra, P. N. and C. M. Henriksen (1998) Fluxmap. A Visual Environment for Metabolic Flux Analysis of Biochemical Pathways, Preprint of the 7th Int. Conf. On Comp. Appl. In Biotechnol. Osaka, Japan, 339–344.

  26. Shi, H., M. Shiraishi, and K. Shimizu (1997) Metabolic flux analysis for biosynthesis of poly(β-hydroxybutyric acid) inAlcaligenes eutrophus from various carbon sources.J. Ferment. Bioeng. 84: 579–587.

    Article  CAS  Google Scholar 

  27. Hata, J., Q. Hua, C. Yang, K. Shimizu, and M. Taya (2000) Characterization of energy conversion based on metabolic flux analysis in mixotrophic liverwort cells,Marchantia polymorpha.Biochem. Eng. J. 6: 65–74.

    Article  CAS  Google Scholar 

  28. Yang, C. Q. Hua, and K. Shimizu (2000) Energetics and carbon metabolism during growth of microalgal cell under photoautotrophic, mixotrophic and cyclic light-autotrophic /dark-heterotrophic conditions.Biochem. Eng. J. 6: 87–102.

    Article  CAS  Google Scholar 

  29. van Gulik, W. M. and J. J. Heijinen (1995) A metabolic network stochiometry analysis of microbial growth and product formation.Biotechnol. Bioeng. 48: 681–698.

    Article  Google Scholar 

  30. Pramanik, J. and J. D. Keasling (1997) Stoichiometric model ofEscherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements.Biotechnol. Bioeng. 56: 398–421.

    Article  CAS  Google Scholar 

  31. Takiguchi, N., H. Shimizu, and S. Shioya (1997) An on-line physiological state recognition system for the lysine fermentation process based on a metabolic reaction model.Biotechnol. Bioeng. 55: 170–181.

    Article  CAS  Google Scholar 

  32. O'Leary, M. H. (1982) Heavy-atom isotope effects on enzyme-catalyzed reactions, In H. L. Schmidt, H. Forstel, and K. Heinzingler (eds.).Analytical Chemistry Symposia Series, Vol. 11, Elsevier, Amsterdam, The Netherland.

    Google Scholar 

  33. Winkler, F. J., H. Kexel, C. Kranz, and H.-L. Schmidt (1982) Parameters affecting the13CO2/12CO2 discrimination of the ribulose-1,5-bisphosphate carboxylase reaction, pp. 83–89, In: H.-L. Schmidt, H. Forstel, and K. Heinzinger (eds.),Analytical Chemistry Symposia Series, Vol. 11, Elsevier, Amsterdam, The Netherland.

    Google Scholar 

  34. Wiechert W. and A. A. de Graaf (1997) Metabolic networks: I. Modeling and simulation of carbon isotope labelling experiments.Biotechnol. Bioeng. 55: 101–117.

    Article  CAS  Google Scholar 

  35. Zupke, C. and G. Stephanopoulos (1994) Modeling of isotope distributions and intracellular fluxes in metabolic networks using atom mapping matrices.Biotechnol. Prog. 10: 489–498.

    Article  CAS  Google Scholar 

  36. Schmidt, K., M. Carlsen, J. Nielsen, and J. Villadsen (1997) Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices.Biotechnol. Bioeng. 55: 831–840.

    Article  CAS  Google Scholar 

  37. Wittmann, C. and E. Heinzle (1999) Mass spectrometry for metabolic flux analysis.Biotechnol. Bioeng. 62: 739–750.

    Article  CAS  Google Scholar 

  38. Christensen, B. and J. Nielsen (1999) Isotopomer analysis using GC-MS.Metabolic Eng. 1: 282–290.

    Article  CAS  Google Scholar 

  39. Schmidt, K., J. Nielsen, and J. Villadsen (1999) Quantitative analysis of metabolic fluxes inEscherichia coli, using two-dimensional NMR spectroscopy and complete isotopomer models.J. Biotechnol. 71: 175–190.

    Article  CAS  Google Scholar 

  40. Yang, C., Q. Hua, and K. Shimizu (2002) Quantitative analysis of intracellular metabolic fluxes using GC-MS and two-dimensional NMR spectroscopy.J. Biosci. Bioeng. 92: 277–284.

    Google Scholar 

  41. Szyperski, T. (1995) Biosynthetically directed fractional13C-labeling of proteinogenic amino acids: An efficient analytical tool to investigate intermediary metabolism.Eur. J. Biochem. 232: 433–448.

    Article  CAS  Google Scholar 

  42. Lee, W.-N. P., L. O. Byerley, E. A. Bergner, and J. Edmond (1991) Mass isotopomer analysis: Theoretical and prac-tical considerations.Biol. Mass Spectrometry 20: 451–458.

    Article  CAS  Google Scholar 

  43. Lee, W.-N. P., E. A. Bergner, and Z. K. Guo (1992) Mass isotopomer patterns and precurser-product relationship.Biol. Mass Spectrometry 21: 114–122.

    Article  CAS  Google Scholar 

  44. Klapa, M. I., S. M. Park, A. J. Sinskey, and G. Stephanopoulos (1999) Metabolite and isotopomer balancing in the analysis of metabolic cycles: I. Theory.Biotechnol. Bioeng. 62: 375–391.

    Article  CAS  Google Scholar 

  45. Park, S. M., M. I. Klapa, A. J. Sinskey and G. Stephanopoulos (1999) Metabolite and isotopomer balancing in the analysis of metabolic cycles.Biotechnol. Bioeng. 62: 392–401.

    Article  CAS  Google Scholar 

  46. Wiechert W. C., Siefke, A. A. de Graaf, and A. Marx (1997) Metabolic networks: II. Flux estimation and statistical analysis.Biotechnol. Bioeng. 55: 118–135.

    Article  CAS  Google Scholar 

  47. Wiechert W., M. Mollney, N. Isermann, M. Wurzel, and A. A. de Graaf (1999) Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems.Biotechnol. Bioeng. 66: 69–85.

    Article  CAS  Google Scholar 

  48. Mollney, M., W. Wiechert, D. Kownatzki, and A. A. de Graaf (1999) Bidirectional reaction steps in metabolic networks: IV. Optimal design of isotopomer labeling experiments.Biotechnol. Bioeng. 60: 86–103.

    Article  Google Scholar 

  49. Christensen, B., and J. Nielsen (2000) Metabolic network analysis ofP. chrisogenum using13C-labeled glucose.Biotechnol. Bioeng. 68: 652–659.

    Article  CAS  Google Scholar 

  50. Yang, C., Q. Hua, and K. Shimizu (2002) Metabolic flux analysis in Synechocystis using isotope distribution from13C-labeled glucose.Metabolic Eng. in press.

  51. Seressiotis, A. and J. E. Bailey (1988) MPS: An artificially intelligent software system for the analysis and synthesis of metabolic pathways.Biotechnol. Bioeng. 31: 587–602.

    Article  CAS  Google Scholar 

  52. Mavrovouniotis, M. L., G. Stephanopoulos, and G. Stephanopoulos (1990) Computer-aided synthesis of biochemical pathways.Biotechnol. Bioeng. 36: 1119–1132.

    Article  CAS  Google Scholar 

  53. Holms, W. H. (1996) Flux analysis and control of the central metabolic pathways inEscherichia coli.FEMS Microbiol. Rev. 19: 85–116.

    Article  CAS  Google Scholar 

  54. Shi, H., J. Nikawa, and K. Shimizu (1999) Effect of modifying metabolic network on poly (3-hydroxybutyrate) biosynthesis in recobminantEscherichia coli.J. Biosci. Bioeng. 87: 666–677.

    Article  CAS  Google Scholar 

  55. Adachi, E., M. Torigoe, M. Sugiyama, J. Nikawa, and K. Shimizu (1998) Modification of metabolic pathways ofS. cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decalboxylase genes for the lactic acid fermentation at low pH value.J. Ferment. Bioeng. 86: 284–289.

    Article  CAS  Google Scholar 

  56. Yonehara, T. and R. Miyata (1994) Fermentation production of pyruvate from glucose byTorulopsis glabrata.J. Ferment. Bioeng. 78: 155–159.

    Article  CAS  Google Scholar 

  57. Miyata, R. and T. Yonehara (1996) Improvement of fermentative production of pyruvate from glucose byTorulopsis glabrata IFO 0005.J. Ferment. Bioeng. 82: 475–479.

    Article  CAS  Google Scholar 

  58. Hua, Q., C. Yang, and K. Shimizu (1999) Metabolic flux analysis for efficient pyruvate fermentation using vitamin-auxotrophic yeast ofT. glabrata.J. Biosci. Bioeng. 87: 206–213.

    Article  CAS  Google Scholar 

  59. Hua, Q. and K. Shimizu (1999) Effect of dissolved oxygen concentration on the intracellular flux distribution for pyruvate fermentation.J. Biotechnol. 68: 135–147.

    Article  CAS  Google Scholar 

  60. Hua, Q., C. Yang, and K. Shimizu (2001) Effect of glucose, vitamins, and DO concentrations on the pyruvate fermentation using T. glabrata IFO 0005 with metabolic flux analysis.Biotechnol. Prog. in press.

  61. Delgado, J. and J. C. Liao (1997) Inverse flux analysis for reduction of acetate excretion inEscherichia coli.Biotechnol. Prog. 13: 361–367.

    Article  CAS  Google Scholar 

  62. Kacser, H. and J. A. Burns (1973) The control of flux.Symp. Soc. Exp. Biol. 27: 65–104.

    CAS  Google Scholar 

  63. Heinrich, R. and T. A. Rapoport (1974) A linear steady-state treatment of enzymatic chains: General properties, control and effector strength.Eur. J. Biochem. 42: 89–95.

    Article  CAS  Google Scholar 

  64. Liao, J. C. and J. Delgado (1998) Flux calculation using metabolic control constraints.Biotechnol. Prog. 14: 554–560.

    Article  CAS  Google Scholar 

  65. Ehlde, M. and G. Zacchi (1997) A general formalism for metabolic control analysis.Chem. Eng. Sci. 52: 2599–2606.

    Article  CAS  Google Scholar 

  66. Kacser, H., H. Sauro, and L. Acerenza (1990) Enzyme-enzyme interactions and control analysis. 1. The case of non-additivity: Monomer-oligomer associations.Eur. J. Biochem. 187: 481–491.

    Article  CAS  Google Scholar 

  67. Yang, C., Q. Hua, and K. Shimizu (1999) Development of a kinetic model for L-lysine biosynthesis inCorynebacterium glutamicum and its application to metabolic control analysis.J. Biosci. Bioeng. 80: 393–403.

    Article  Google Scholar 

  68. Hua, Q., C. Yang, and K. Shimizu (2001) Metabolic control analysis of lysine biosynthesis inCorynebacterium glutamicum with experimental verification.J. Biosci. Bioeng. 90: 184–192.

    Google Scholar 

  69. Nielsen, J. and H. S. Jorgensen (1995) Metabolic control analysis of the penicillin biosynthetic pathway in a high-yielding strain ofPenicillium chrisogenum.Biotechnol. Prog. 11: 299–305.

    Article  CAS  Google Scholar 

  70. Fell, D. (1992) Metabolic control analysis: A survey of its theoretical and experimental development.Biochem. J. 286: 313–330.

    CAS  Google Scholar 

  71. Stephanopoulos, G. and T. W. Simpson (1997) Flux ampification in complex metabolic networks.Chem. Eng. Sci. 52: 2607–2627.

    Article  CAS  Google Scholar 

  72. Simpson, T. W., H. Shimizu, and G. Stephanopoulos (1998) Experimental determination of group flux control coefficients in metabolic networks.Biotechnol. Bioeng. 58: 681–698.

    Article  Google Scholar 

  73. Mauch, K., S. Arnold, and M. Reuss (1997) Dynamic sensitivity analysis for metabolic systems.Chem. Eng. Sci. 52: 2589–2598.

    Article  CAS  Google Scholar 

  74. Theobald, U., W. Mailinger, M. Baltes, M. Rizzi, and M. Reuss (1997)In vivo analysis of metabolic dynamicsin Saccharomyces cerevisiae: I. Experimental observations.Biotechnol. Bioeng. 55: 305–316.

    Article  CAS  Google Scholar 

  75. Rizzi, M., M. Baltes, V. Theobald, and M. Reuss (1997)In vivo analysis of metabolic dynamics inSaccharomyces cerevisiae: II. Mathematical model.Biotechnol. Bioeng. 55: 592–608.

    Article  CAS  Google Scholar 

  76. Varner, J. and D. Ramkrishna (1999) Metabolic engineering from a cybernetic perspective. 1. Theoretical preliminariesBiotechnol. Prog. 15: 407–425.

    Article  CAS  Google Scholar 

  77. Varner, J. and D. Ramkrishna (1999) Metabolic engineering from a cybernectic perspective. 2. Qualitative investigation of nodal architechtures and their response to genetic perturbation.Biotechnol. Prog. 15: 426–438.

    Article  CAS  Google Scholar 

  78. Mavrovouniotis, M. L. (1990) Group contributions for estimating standard gibbs energies of formation of biochemical compounds in aqueous solutions.Biotechnol. Bioeng. 36: 1070–1082.

    Article  CAS  Google Scholar 

  79. Mavrovouniotis, M. L. (1993) Identification of localized and distributed bottlenecks in metabolic pathways, International Conf. On Intelligent System for Molecular Biology, Washington DC, USA

  80. Pissarra, P. N. and J. Nielsen (1997) Thermodynamics of metabolic pathways for penicillin production: Analysis of thermodynamic feasibility and free energy changes during fed-batch cultivation.Biotechnol. Prog. 13: 156–165.

    Article  CAS  Google Scholar 

  81. Savageau, M. A., E. O. Voit, and D. H. Invine (1987) Biochemical systems theory and metabolic control theory: 1. Fundamental similarities and differences.Math. Biosci. 86: 127–145.

    Article  CAS  Google Scholar 

  82. Savageau, M. A., E. O. Voit, and D. H. Invine (1987) Biochemical systems theory and metabolic control theory: 2. The role of summation and connectivity relationships.Math. Biosci. 86: 147–169.

    Article  CAS  Google Scholar 

  83. Hatzimanikatis, V., C. A. Floudas, and J. E. Bailey (1996) Optimization of regulatory architectures in me-tabolic reaction networks.Biotechnol. Bioeng. 52: 485–500.

    Article  CAS  Google Scholar 

  84. Regan, L., D. Bogle, and P. Dunnill (1993) Simulation and optimization of metabolic pathways.Comp. Chem. Eng. 17: 627–637.

    Article  CAS  Google Scholar 

  85. Voit, E. O. (1992) Optimization in integrated biochemi-cal systems.Biotechnol. Bioeng. 40: 572–582.

    Article  CAS  Google Scholar 

  86. Hatzimanikatis, V. C. A. Floudas, and J. E. Bailey (1996) Analysis and design of metabolic reaction networks via mixed-integer linear optimization.AIChE J. 42: 1277–1292.

    Article  CAS  Google Scholar 

  87. Hatzimanikatis, V. and J. E. Bailey (1996) MCA has more to say.J. Theor. Biol. 182: 233–242.

    Article  CAS  Google Scholar 

  88. Hua, Q., C. Yang, and K. Shimizu (2001) Design of metabolic regulatory structures for enhanced lysine synthesis flux using (log) linearized kinetic models.Biochem. Eng. J. in press.

  89. Ye, K., M. Shijo, S. Jin, and K. Shimizu (1996) Efficient production of Vitamin B12 from propionic acid bacteria under periodic variation of dissolved oxygen concentration.J. Ferment. Bioeng. 82: 484–491.

    Article  CAS  Google Scholar 

  90. Ye, K., M. Shijo, K. Miyano, and K. Shimizu (1990) Metabolic pathway of Propionibacterium growing with oxygen: Enzymes,13C NMR analysis and its application for vitamin B12 production with periodic fermentation.Biotechnol. Prog. 15: 201–201.

    Article  Google Scholar 

  91. Schilling, C. H., J. S. Edwards, and B. O. Palsson (1999) Toward metaboolic phenomics: Analysis of genomic data using flux balances.Biotechnol. Prog. 15: 288–295.

    Article  CAS  Google Scholar 

  92. Kao, C. M. (1999) Functional genomic technologies: Creating new paradiums for fundamental and applied biology.Biotechnol. Prog. 15: 304–311.

    Article  CAS  Google Scholar 

  93. Velculescu, V. E., L. Zhang, W. Zhou, J. Vogelstein, M. A. Basrai, D. E. J. Bassett, P. Hieter, B. Vogelstein, and K. W. Kinzler (1997) Characterization of the yeast transcriptome.Cell 80: 243–251.

    Article  Google Scholar 

  94. DeRishi, J. L., V. R. Iyer, and P. O. Brown (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale.Science 278: 680–686.

    Article  Google Scholar 

  95. Hatzimanikatis, V., L. H. Choe, and K. H. Lee (1999) Proteomics: Theoretical and experimental considerations.Biotechnol. Prog. 15: 312–318.

    Article  CAS  Google Scholar 

  96. Edwards, J. S. and B. O. Palsson (2000)Escherichia coli K-12in silico: Definition of its metabolic genotype and analysis of its capabilities. submitted for publication.

  97. Yang, C., Q. Hua, and K. Shimizu (2002) Integration of the information from gene expression and metabolic fluxes for the analysis of the regulatory mechanisms in Synechocystis.Appl. Microbiol. Bioeng. 58: 813–822.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azuyuki Shimizu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimizu, A. A review on metabolic pathway analysis with emphasis on isotope labeling approach. Biotechnol. Bioprocess Eng. 7, 237–251 (2002). https://doi.org/10.1007/BF02932832

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932832

Keywords

Navigation