Skip to main content
Log in

Biosynthesis and biotechnological production of degradable polyhydroxyalkanoic acid

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The use of biodegradable polymers is one of the key solution to environmental problems and the development of biocompatible material. The impact of such a large commercial opportunity is one of the primary reasons for much interest in the field of microbial polyester, polyhydroxyalkanoic acid (PHA). Its valuable properties of biodegradability, biocompatibility and thermoplasticity have attracted considerable commercial interest, and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] has been launched as the first market product. Recent advances in molecular genetics and microbial physiology of PHA biosynthesis have been uncovering the biosynthetic mechanics at molecular level, and extensive efforts for the developments of practical applications and cost-effective mass production of PHA will profell the commercialization of PHA towards the commodity market for biodegradable plastics. The biosynthesis of new members of PHA family with new monomer or unusual composition will also lead to the biotechnological production of tailor-made biopolymer for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, A. J. and F. A. Dawes (1990) Oceucrence, metabolism, metabolic role and Industrial uses of bacterial polyhydroxyalkanoates.Microbiol. Rev. 54: 450–472.

    CAS  Google Scholar 

  2. Doi, Y. (1990)Microbial polyesters. VCH. New York.

    Google Scholar 

  3. Masamune, S., C. T. Walsh, A. J. Sinskey, and O. P. Peoples (1989) Poly-(R)-3-hydroxybutyrate (PHB) biosynthesis: mechanistic studies on the biological Claisen condensation catalyzed by β-ketoacyl thiolase.Pure & Appl. Chem. 61: 303–312.

    Article  CAS  Google Scholar 

  4. Holmes, P. A. (1995) Applications of PHB- a microbially produced biodegradable thermoplastic.Phys. Technol. 16: 32–36.

    Article  Google Scholar 

  5. Byrom, D. (1987) Polymer synthesis by microorganisms: technology and economics.TIBTECH. 5: 246–250.

    CAS  Google Scholar 

  6. Byrom, D. (1992) Production of poly-β-hydroxybutyrate: poly-β-hydroxyvalerate copolymers.FEMS Microbiol. Rev. 103: 247–250.

    CAS  Google Scholar 

  7. Lemoigne, M. (1926) Produits de deshydration et de polymerisation de Pacide β-oxybutyric.Bull. Soc. Chim. Biol. 8: 576–579.

    Google Scholar 

  8. Davis, J. B. (1964) Cellular lipids of aNorcardia growth on propane and n-butane.Appl. Microbiol. 12: 301–304.

    CAS  Google Scholar 

  9. Wallen, L. L. and W. K. Rohwedder (1974) Poly-β-hydroxyalkanoate from activated sludge.Environ. Sci. Technol. 8: 576–579.

    Article  CAS  Google Scholar 

  10. De Smet, M. J., G. Eggink, B. Witholt, J. Kingma, and H. Wynberg (1983) Characteriation of intracellular inclusions formed byPseudonomas oleovorans during growth on octane.J. Bacteriol. 154: 870–878.

    Google Scholar 

  11. Steinbüchel, A., and H. E. Valentin (1995) Diversity of bacterial polyhydroxyalkanoic acids.FEMS Microbiol. Letters. 128: 219–228.

    Article  Google Scholar 

  12. Brandl, H., R. A. Gross, R. W. Lenz, and R. C. Fuller (1988)Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters.Appl. Environ. Microbiol. 54: 1977–1982.

    CAS  Google Scholar 

  13. Lageveen, R. G., G. W. Huiseman, H. Preusting, P. Ketelaar, G. Eggink, and B. Witholt (1988) Formation of polyesters byPseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates.Appl. Environ. Microbiol. 54: 2924–2932.

    CAS  Google Scholar 

  14. Haywood, G. W., A. J. Anderson, D. F. Ewing, and E. A. Dawes (1990) Accumulation of a polyhydroxyalkanoate containing primarily 3-hydroxydecanoate from simple carbohydrate substrates byPseudomonas sp. NCIMB 40135.Appl. Environ. Microbiol. 56: 3354–3359.

    CAS  Google Scholar 

  15. Timm, A. and A. Steinbüchel (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate byPseudomonas aeruginosa and other fluorescent pseudomonads.Appl. Environ. Microbiol. 56: 3360–3367.

    CAS  Google Scholar 

  16. Huijberts, G. N. M., G. Eggink, P. De Waard, G. W. Huisman, and B. Witholt (1992)Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers.Appl. Environ. Microbiol. 58: 536–544.

    CAS  Google Scholar 

  17. Lee, E. Y., S. H. Kang, S. H. Oh, A. Steinbüchel, and C. Y. Choi (1994) Biosynthesis of novel polyhydroxyalkanoates byPseudomonas sp. p. 229–231. In: W. K. Teoet al. (ed.)Better living through innovative biochemical engineering. Continental Press, Singapore.

    Google Scholar 

  18. Lee, E. Y., D. Jendrossek, A. Schimer, C. Y. Choi, and A. Steinbüchel (1995) Biosynthesis of copolyesters consisting of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids from 1,3-butanediol or from 3-hydroxybutyrate byPseudomonas sp. A33.Appl. Microbiol. Biotechnol. 42: 901–909.

    Article  CAS  Google Scholar 

  19. Lee, E. Y. and C. Y. Choi (1995) Gas chromatography-mass spectrometric analysis and its application to a screening procedure for novel bacterial polyhydroxyalkanoic acids containing long chain saturated and unsaturated monomers.J. Ferment. Bioeng. 80: 408–414.

    Article  CAS  Google Scholar 

  20. Eggink, G., P. de Waard, and G. N. M. Huijberts (1990) Production of poly-3-hydroxyalkanoates byP. putida during growth on long-chain fatty acids. p. 441–444. In: E. A. Dawes (ed.)Novel biodegradable microbial polymers. Kluwer Academic Publishers. Dordrecht, Netherlands.

    Google Scholar 

  21. Doi, Y., M. Kunioka, Y. Nakamura, and K. Soga (1988) Nuclear magnetic resonance studies on unusual bacterial copolyesters of 3-hydroxybutyrate and 4-hydroxybutyrate.Macromol. 21: 2722–2727.

    Article  CAS  Google Scholar 

  22. Doi, Y., A. Tamaki, M. Kunioka, and K. Soga (1987) Biosynthesis of terpolyesters of 3-hydroxybutyrate, 3-hydroxyvalerate, and 5-hydroxyvalerate inAlcaligenes eutrophus from 5-chloropentanoic and pentanoic acids.Makromol. Chem. Rapid Commun. 8: 631–635.

    Article  CAS  Google Scholar 

  23. Kunioka, M., Y. Nakamura, and Y. Doi (1988) New bacterial copolyesters produced inAlcaligenes eutrophus from organic acids.Polymer Commun. 29: 174–176.

    CAS  Google Scholar 

  24. Valentin, H. E., A. Schönebaum, and A. Steinbüchel (1992) Identification of 4-hydroxyvaleric acid as a constituent of biosynthetic polyhydroxyalkanoic acids from bacteria.Appl. Microbiol. Biotechnol. 36: 507–514.

    Article  CAS  Google Scholar 

  25. Valentin, H. E., E. Y. Lee, C. Y. Choi, and A. Steinbüchel (1994) Identification of 4-hydroxyhexanoic acid as a new constituent of biosynthetic polyhydroxyalkanoic acids from bacteria.Appl. Microbiol. Biotechnol. 40: 710–716.

    Article  CAS  Google Scholar 

  26. Lee, E. Y. and C. Y. Choi (1997) Structural identification of polyhydroxyalkanoic acid (PHA) containing 4-hydroxyalkanoic acids by gas chromatography-mass spectrometry (GC-MS) and its application to bacteria screening.Biotech. Techniques. 11: 167–171.

    Article  CAS  Google Scholar 

  27. Fritzsche, K., R. W. Lenz, and R. C. Fuller (1990) An unusual bacterial polyester with a phenyl pendent group.Macromol. Chem. 191: 1957–1965.

    Article  CAS  Google Scholar 

  28. Fritzsche, K., R. W. Lenz, and R. C. Fuller (1990) Bacterial polyesters containing branched poly(β-hydroxyalkanoate) units.Int. J. Biol. Macromol. 12: 92–101.

    Article  CAS  Google Scholar 

  29. Fritzsche, K., R. W. Lenz, and R. C. Fuller (1990) Production of unsaturated polyesters byPseudomonas oleovorans.Int. J. Biol. Macromol. 12: 85–91.

    Article  CAS  Google Scholar 

  30. Lenz, R. W., Y. B. Kim, and R. C. Fuller (1992) Production of unusual bacterial polyesters byPseudomonas oleovorans through cometabolism.FEMS Microbiol. Rev. 103: 207–214.

    Article  CAS  Google Scholar 

  31. Valentin, H. E. and A. Steinbüchel (1994) Application of enzymatically synthesized shortchain-length hydroxy fatty acid coenzyme A thioesters for assay of polyhydroxyalkanoic acid synthase.Appl. Microbiol. Biotechnol. 40: 699–709.

    Article  CAS  Google Scholar 

  32. Dawes, E. A. and P. J. Senior (1973) Energy reserve polymers in microorganisms.Arch. Microbiol. Physiol. 14: 203–266.

    Google Scholar 

  33. Reusch, R. N. and H. L. Sadoff (1988) Putative structure and functions of a poly-β-hydroxybutyrate/calcium polyphosphate channel in bacterial plasma membranes.Proc. Natl. Sci. USA. 85: 4176–4180.

    Article  CAS  Google Scholar 

  34. Barnard, G. N. and K. M. Sanders (1989) The poly-β-hydroxybutyrate granulein vivo.J. Biol. Chem. 24: 3286–3291.

    Google Scholar 

  35. Gerngross, T. U., P. Reilly, J. Stubbe, A. J. Sinskey, and O. P. Peoples (1993) Immunocytochemical analysis of poly-β-hydroxybutyrate (PHB) synthase inAlcaligenes eutrophus H16: Localization of the synthase enzyme at the surface of PHB granules.J. Bacteriol. 175: 5289–5293.

    CAS  Google Scholar 

  36. Lauzier, C., J.-F. Revol, and R. H. Marchessault (1992) Topotactic crystallization of isolated poly (β-hydroxybutyrate) granules fromAlcaligenes eutrophus.FEMS Microbiol. Rev. 103: 299–310.

    CAS  Google Scholar 

  37. Shirakura, Y., T. Fukui, T. Saito, Y. Okamoto, T. Narikawa, K. Koide, K. Tomita, T. Takemasa, and S. Masamune (1986) Degradation of poly(3-hydroxybutyrate) by poly(3-hydroxybutyrate) depolymerase fromAlcaligenes eutrophus T1,Biochim. Biophys. Acta. 880: 46–53.

    CAS  Google Scholar 

  38. Schimer, A., D. Jendrossek, and H. G. Schlegel (1993) Degradation of poly(3-hydroxyoctanoic acid)[P(3HO)] by bacteria: purification and properties of a P(3HO) depolymerase fromPseudomonas fluorescens GK13.Appl. Environ. Microbiol. 59: 1220–1227.

    Google Scholar 

  39. Gerngross, T. U., P. Reilly, J. Stubbe, A. J. Sinskey, and O. P. Peoples (1993) Immunocytochemical analysis of poly-β-hydroxybutyrate (PHB) synthase inAlcaligenes eutrophus H16: Localization of the synthase enzyme at the surface of PHB granules.J. Bacteriol. 175: 5289–5293.

    CAS  Google Scholar 

  40. Haywood, G. W., A. J. Anderson, and E. A. Dawes (1988) Characterization of two 3-ketothiolases possessing differing substrate specificities in the polyhydroxyalkanoate synthesizing organismAlcaligenes eutrophus.FEMS Microbiol. Lett. 52: 91–96.

    Article  CAS  Google Scholar 

  41. Steinbüchel, A. and H. G. Schlegel (1991) Physiology and molecular genetics of poly(β-hydroxyalkanoic acid) synthesis inAlcaligenes eutrophus.Molecular Microbiol. 5: 535–542.

    Article  Google Scholar 

  42. Haywood, G. W., A. J. Anderson, L. Chu, and E. A. Dawes (1988) The role of NADH- and NADPH-linked acetoacetyl-CoA reductases in the poly-3-hydroxybutyrate synthesizing organismAlcaligenes eutrophus.FEMS Microbiol. Lett. 52: 259–264.

    Article  CAS  Google Scholar 

  43. Haywood, G. W., A. J. Anderson, L. Chu, and E. A. Dawes (1989) The importance of PHB-synthase substrate specificity in polyhydroxyalkanoate synthesis byAlcaligenes eutrophus.FEMS Microbiol. Lett. 57: 1–6.

    Article  CAS  Google Scholar 

  44. Slater, S., T. Gallaher and D. Dennis (1992) Production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in a recombinantEscherichia coli strain.Appl. Environ. Microbiol. 58: 1089–1094.

    CAS  Google Scholar 

  45. Schubert, P., A. Steinbüchel, and H. G. Schlegel (1988) Cloning of theAlcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB inEscherichia coli.J. Bacteriol. 170: 5837–5847.

    CAS  Google Scholar 

  46. Peoples, O. P. and A. J. Sinskey (1989) Poly-β-hydroxybutyrate (PHB) biosynthesis inAlcaligenes eutrophus H16: Characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductases.J. Biol. Chem. 264: 15293–15297.

    CAS  Google Scholar 

  47. Peoples, O. P. and A. J. Sinskey (1989) Poly-β-hydroxybutyrate (PHB) biosynthesis inAlcaligenes eutrophus H16: Identification and characterization of the PHB polymerase gene (phbC).J. Biol. Chem. 264: 15298–15303.

    CAS  Google Scholar 

  48. Schubert, P., N. Kruger, and A. Steinbüchel (1991) Molecular analysis of theAlcaligenes eutrophus poly(3-hydroxybutyrate) [PHB] biosynthetic operon: identification of the N-terminus of PHB synthase and identification of the promoter.J. Bacteriol. 173: 168–175.

    CAS  Google Scholar 

  49. Steinbüchel, A., E. Hustede, M. Liebergesell, U. Pieper, A. Timm, and H. Valentin (1992) Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria.FEMS Microbiol. Rev. 103: 217–230.

    Google Scholar 

  50. Huisman, G. W., E. Wonink, R. Meima, B. Katzeimer, P. Terpstre, and B. Witholt (1991) Metabolism of poly(3-hydroxyalkanoates) byPseudomonas oleovorans: identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA.J. Biol. Chem. 266: 2191–2198.

    CAS  Google Scholar 

  51. Timm, A. and A. Steinbüchel (1992) Cloning and molecular analysis of the poly(3-hydroxyalkanoic acid) gene locus ofPseudomonas aeruginosa PAO 1.Eur. J. Biochem. 209: 15–30.

    Article  CAS  Google Scholar 

  52. Timm, A., S. Wiese, and A. Steinbüchel (1994) A general method for identification of polyhydroxyalkanoic acid genes from pseudomonads belonging to the rRNA homology group I.Appl. Microbiol. Biotechnol. 40: 669–675.

    Article  CAS  Google Scholar 

  53. Liebergesell, M., F. Mayer, and A. Steinbüchel (1993) Analysis of polyhydroxyalkanoic acidbiosynthesis genes of anoxygenic phototrophic bacteria reveals synthesis of a polyester exhibiting an unusual composition.Appl. Microbiol. Biotechnol. 40: 292–300.

    Article  CAS  Google Scholar 

  54. Haywood, G. W., A. J. Anderson, D. R. Williams, and E. A. Dawes (1991) Accumulation of a poly (hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates byRhodococcus sp. NCIMB 40126.Int. J. Biol. Macromol. 13: 83–88.

    Article  CAS  Google Scholar 

  55. Lee, E. Y. (1995)Microbial Synthesis and Genetic Engineering for Production of Novel Biodegradable Polyhydroxyalkanoates. Seoul National University, Seoul, Korea.

    Google Scholar 

  56. Schulz, H. and W. H. Kunau (1987) Beta-oxidation of unsaturated fatty acids: a revised pathway.TIBS. 12: 403–406.

    CAS  Google Scholar 

  57. Lee, E. Y., W. J. Choi, A. Steinbüchel, and C. Y. Choi (1996) Cell-recycle fed-batch production of a highly unsaturated polyhydroxyalkanoate from I. 3-butanediol byPseudomonas sp. A33.J. Environ Polym. Degrad. 4: 103–112.

    Article  CAS  Google Scholar 

  58. Anderson, A. J., D. R. Williams, B. Taidi, E. A. Dawes, and D. F. Ewing (1992) Studies on copolyester synthesis byRhodococcus ruber and factors influencing the molecular mass of polyhydroxybutyrate accumulated byMethylobacterium extorquens andAlcaligenes eutrophus.FEMS Microbiol. Rev. 103: 93–102.

    Article  CAS  Google Scholar 

  59. Steinbüchel, A. and U. Pieper (1992) Production of a copolyester of 3-hydroxybutyric acid and 3-hydroxyvaleric acid from single unrelated carbon sources by a mutant ofAlcaligenes eutrophus.Appl. Microbiol. Biotechnol. 37: 1–6.

    Google Scholar 

  60. Lee, E. Y., S. H. Kang, and C. Y. Choi (1995) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by newly isolatedAgrobacterium sp. SH-1 and GW-014 from structurally unrelated carbon substrates.J. Ferment. Bioeng. 79: 328–334.

    Article  CAS  Google Scholar 

  61. Doi, Y., A. Tamaki, M. Kunioka, and Soga, K. (1987) Biosynthesis of an unusual copolyester (10 mol% 3-hydroxybutyrate and 90 mol% 3-hydroxyvalerate units) inAlcaligenes eutrophus from pentanoic acids.J. Chem. Soc. Chem. Commun. 21: 1635–1636.

    Article  Google Scholar 

  62. Doi, Y., A. Tamaki, M. Kunioka, and K. Soga (1988) Production of copolyesters of 3-hydroxybutyrate and 3-hydroxyvalerate byAlcaligenes eutrophus from butyric and pentanoic acids.Appl. Microbiol. Biotechnol. 28: 330–334.

    Article  CAS  Google Scholar 

  63. Timm, A., D. Byrom, and A. Steinbüchel (1990) Formation of blends of various poly(3-hydroxyalkanoic acids) by a recombinant strain ofPseudomonas oleovorans.Appl. Microbiol. Biotechnol. 33: 296–301.

    Article  CAS  Google Scholar 

  64. Prusting, H., J. Kingma, G. Huisman, A. Steinbüchel, and B. Witholt (1992) Formation of polyester blends by a recombinant strain ofPseudomonas oleovorans: different poly(3-hydroxyalkanoates) are stored in separate granules.J. Environ. Polym. Degrad. 1: 11–21.

    Article  Google Scholar 

  65. Doi, Y., Y. Kanesawa, M. Kunioka, and T. Saito (1990) Biodegradation of microbiol copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxyvalerate).Macromol. 23: 26–31.

    Article  CAS  Google Scholar 

  66. Inoue, Y. and N. Yoshie (1992) Structure and physical properties of bacterially synthesized polyesters.Prog. Polym. Sci. 17: 571–610.

    Article  CAS  Google Scholar 

  67. Bluhm, T. L., G. K. Hamer, R. H. Marchessaults, C. A. Fyfe, and R. P. Veregin (1986) Isodimorphism in bacterial poly(3-hydroxybutyrate-co-β-hydroxyvalerate).Macromol. 19: 2871–2876.

    Article  CAS  Google Scholar 

  68. Helmut, B., R. A. Gross, R. W. Lenz, and R. C. Fuller (1990) Plastics from bacteria and for bacteria: poly(β-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. p. 77–93. In: T. K. Ghoseet al. (ed.)Advances in biochemical engineering. Springer-Verlag, Berlin.

    Google Scholar 

  69. Hrabak, O. (1992) Industrial production of poly-β-hydroxybutyrate.FEMS Microbiol. Rev. 103: 251–256.

    CAS  Google Scholar 

  70. Lee, S. Y. (1995) Bacterial polyhydroxyalkanoates.Biotechnol. Bioeng. 49: 1–14.

    Article  Google Scholar 

  71. Kim, B. S., S. C. Lee, S. Y. Lee, H. N. Chang, Y. K. Chang, and S. I. Woo (1994) Production of poly(3-hydroxybutyric acid) by fed-batch culture ofAlcaligenes eutrophus with glucose concentration control.Biotechnol. Bioeng. 43: 892–898.

    Article  CAS  Google Scholar 

  72. Lee, S. Y., H. N. Chang, and Y. K. Chang (1994) Production of poly(β-hydroxybutyric acid) by recombinantEscherichia coli.Ann. NY Acad. Sci. 721: 43–53.

    Article  CAS  Google Scholar 

  73. Lee, S. Y., K. S. Yim, H. N. Chang, and Y. K. Chang (1994) Construction of plasmids, estimation of plasmid stability, and use of stable plasmids for the production of poly(3-hydroxybutyric acid) inEscherichia coli.J. Biotechnol. 32: 203–211.

    Article  CAS  Google Scholar 

  74. Anonymous (1992)Technology and commercial opportunities in biodegradable polymers. Bioinformation Associates. Boston.

  75. Poirier, Y., D. Dennis, K. Klomparene, and C. Somerville (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants.Science 256: 520–523.

    Article  CAS  Google Scholar 

  76. Poirier, Y., D. Dennis, K. Klomparene, C. Nawrath, and C. Somerville (1992) Perspectives on the production of polyhydroxyalkanoates in plants.FEMS Microbiol. Rev. 103: 237–246.

    Article  CAS  Google Scholar 

  77. Poirier, Y., C. Nawrath, and C. Somerville (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants.Bio/technology 13: 142–150.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cha Yong Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, E.Y., Choi, C.Y. Biosynthesis and biotechnological production of degradable polyhydroxyalkanoic acid. Biotechnol. Bioprocess Eng. 2, 1–10 (1997). https://doi.org/10.1007/BF02932454

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932454

Key words

Navigation