Skip to main content
Log in

The influence of bakers’ yeast cells on protein adsorption performance in dye-ligand expanded bed chromatography

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The influence of whole yeast cells (0–15% w/v) on the protein adsorption performance in dye-ligand chromatography was explored. The adsorption of a model protein, bovine serum albumin (BSA), was selected to demonstrate this approach. The UpFront adsorbent (ρ=1.5 g/cm3) derivatised with Cibacron Blue 3GA and a commercially available expanded bed column (20 mm i.d.) from UpFront Chromatography, Denmark, were employed in the batch binding and expanded bed operation. The BSA binding capacity was demonstrated to not be adversely affected by the presence of yeast cells. The dynamic binding capacity of BSA at aC/C 0=0..1 biomass concentration of 5, 10, 15% w/v were 9, 8, and 7.5 mg/mL of settled adsorbent, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thoemmes, J. (1997) Fluidised bed adsorption as a primary recovery step in protein purification.Adv. Biochem. Eng. Biotechnol. 58: 183–190.

    Google Scholar 

  2. Zhu, J., A. Lyddiatt, A. W. Pacek, and A. W. Nienow (1997) Fabrication and characterisation of agar/zircon sand composite adsorbents for protein recovery in liquid fluidised beds. pp. 103–114. In: A. W. Nienow (eds.).Bioreactor/Process Fluid Dynamics. BHR Group/Mechanical Engineering Publications, London, UK.

    Google Scholar 

  3. Makriyannis, Y. and Y. D. Clonis (1993) Simutalneous separation and purification of pyruvate kinase and lactate dehydrogenase by dye ligand chromatography.Process Biochem. 28: 179–185.

    Article  CAS  Google Scholar 

  4. Denizli, A., A. Tuncel, A. Kozluca, K. Ecevit, and E. Piskin (1997) Cibacron Blue F3GA attached poly(vinylalcohol) particles for specific albumin adsorption.Sep. Sci. Technol. 32: 1003–1015.

    CAS  Google Scholar 

  5. Dean, P. D. G. and D. H. Watson (1979) Protein purification using immobilized traizine dyes.J. Chromatogr. 165: 301–319.

    Article  CAS  Google Scholar 

  6. Gianazza, E. and P. Arnaud (1982) A general method for fractionation of plasma proteins-dye ligand chromatography on immobilized Cibacron Blue F3GA.Biochem. J. 201: 129–134.

    CAS  Google Scholar 

  7. Denizli, A. and E. Piskin (2001) Dye-ligand affinity systems.J. Biochem. Biophys. Methods 49: 391–416.

    Article  CAS  Google Scholar 

  8. Clonis, Y. D., N. E. Labrou, V. P. Kotsira, C. Mazitsos, S. Melissis, and G. Gogolas (2000) Biomimetic dye as affinity chromatography tools in enzyme purification.J. Chromatogr. A 891: 33–44.

    Article  CAS  Google Scholar 

  9. Zhang, S. P. and Y. Sun (2002) Study on protein adsorption kinetics to a dye-ligand adsorbent by the pore diffusion.J. Chromatogr. A 957: 35–46.

    Article  Google Scholar 

  10. Boyer, P. M. and J. T. Hsu (1992) Effect of ligand concentration on protein adsorption in dye ligand adsorbents.Chem. Eng. Sci. 47: 241–251.

    Article  CAS  Google Scholar 

  11. Lin, D. Q., H. M. Fernandez-Lahore, M. R. Kula, and J. Thoemmes (2001) Minimising biomass/adsorbent interactions in expanded bed adsorption processes: a methodological design approach.Bioseparation 10: 7–19.

    Article  CAS  Google Scholar 

  12. Viloria-Cols, M. E., R. Hatti-Kaul, and B. Mattiasson (2004) Agarose-coated anion exchanger prevents cell-adsorbent interactions.J. Chromatogr. A 1043: 195–200.

    Article  CAS  Google Scholar 

  13. Chase, H. A. and N. M. Draeger (1992) Expanded bed adsorption of proteins using ion-exchangers.Sep. Sci. Technol. 27: 2021–2039.

    Article  CAS  Google Scholar 

  14. Chamber, G. K. (1977) Determination of cibacron blue F3GA substitution in blue sephadex and blue dextran sepharose.Anal. Biochem. 83: 551–556.

    Article  Google Scholar 

  15. Bradford, M. M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding.Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  16. Chow, Y. M., M. N. Ibrahim, B. T. Tey, A. B. Ariff, and T. C. Ling (2005) The influence of bakers’ yeast cells on protein adsorption in anion exchange expanded bed chromatography.Biotechnol. Bioprocess Eng. 10: 280–283.

    Article  Google Scholar 

  17. Fernandez-Lahore, H. M., S. Geilenkirchen, K. Boldt, A. Nagel, M. R. Kula, and J. Thoemmes (2000) The influence of cell adsorbent interactions on protein adsorption in expanded beds.J. Chromatogr. A 873: 195–208.

    Article  CAS  Google Scholar 

  18. Ling, T. C. (2002)Development of Rapid and Selective Method for the Direct Recovery of Intracellular Protein from Bakers’ Yeast. Ph.D. Thesis, The University of Birmingham, Birmingham, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tau Chuan Ling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chow, Y.M., Tey, B.T., Ibrahim, M.N. et al. The influence of bakers’ yeast cells on protein adsorption performance in dye-ligand expanded bed chromatography. Biotechnol. Bioprocess Eng. 10, 552–555 (2005). https://doi.org/10.1007/BF02932293

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932293

Keywords

Navigation