Skip to main content

Advertisement

Log in

Bioremoval of Acid Red 14 dye by Wickerhamomyces anomalus biomass: kinetic and thermodynamic study, characterization of physicochemical interactions, and statistical optimization of the biosorption process

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The biomass of a yeast stain of Wickerhamomyces anomalus was evaluated as a natural biosorbent for the removal of Acid Red14 dye (AR14) in batch experiments. The outcome revealed a maximum biosorption capacity of 71.37 mg g−1. Biosorption kinetic followed both the pseudo-second-order and intra-particle-diffusion model, while thermodynamic parameters showed a spontaneous and endothermic nature of the biosorption process. The Freundlich model was the best-fitting isotherms, suggesting a monolayer biosorption via chemisorption at homogeneous sites on the yeast surface. Next, the physicochemical characterization of W. anomalus biomass before and after biosorption using scanning electron microscopy coupled with X-ray spectroscopy, and the Fourier-transforms infrared spectroscopy indicated the involvement of various functional groups (amino, carboxyl, hydroxyl, and carbonyl groups) in AR14-biosorption. Also, the zeta potential of cells at a negative charge, and the acidic value of the zero-charge point confirmed the predominance of anionic groups in the cell wall. Hence, H-binding, π-π, and n-π interactions are likely to participate in the biosorption mechanism. Additionally, the influence of batch conditions on the decolorization capacity was statically screened and optimized using Plackett–Burman and Box–Behnken design, respectively. Results show that biomass dosage is the significant factor having a positive influence on the discoloration rate, while a negative correlation was found for dye concentration and high pH values. Maximum decolorization (77%) was achieved at pH level (3–4), with dye concentrations (50–75 mg L−1) and yeast biomass 1.25 g L−1. These results suggest that W. anomalus might be exploited as an effective, inexpensive, and environmentally friendly biosorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are available from the corresponding author.

References

  1. Waghmode TR, Kurade MB, Kabra AN, Govindwar SP (2012) Degradation of remazol red dye by Galactomyces geotrichum MTCC 1360 leading to increased iron uptake in Sorghum vulgare and Phaseolus mungo from soil. Biotechnol Bioprocess Eng 17(1):117–126. https://doi.org/10.1007/s12257-011-0307-0

    Article  Google Scholar 

  2. Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42(1):138–157. https://doi.org/10.1016/j.jtice.2010.06.006

    Article  Google Scholar 

  3. Fu Y, Viraraghavan T (2001) Fungal decolorization of dye wastewaters: a review. Bioresour Technol 79:251–262. https://doi.org/10.1016/S0960-8524(01)00028-1

    Article  Google Scholar 

  4. Grishkewich N, Mohammed N, Wei S et al (2020) Dye removal using sustainable membrane adsorbents produced from melamine formaldehyde − cellulose nanocrystals and hard wood pulp. Ind Eng Chem Res 22(6):4447–4459. https://doi.org/10.1021/acs.iecr.0c04033

    Article  Google Scholar 

  5. Benabbas K, Zabat N, Hocini I (2020) Facile synthesis of Fe3O4/CuO a core-shell heterostructure for the enhancement of photocatalytic activity under visible light irradiation. Environ Sci Pollut Res 28(4):4329–4341. https://doi.org/10.1007/s11356-020-10749-5

    Article  Google Scholar 

  6. Aqeel K, Mubarak HA, Amoako-attah J, Abdul- LA (2020) Electrochemical removal of brilliant green dye from wastewater. IOP Conf Ser Mater Sci Eng 888(1):012036. https://doi.org/10.1088/1757-899X/888/1/012036

    Article  Google Scholar 

  7. Fadillah G, Saleh A, Wahyuningsih S (2019) Enhanced electrochemical degradation of 4-Nitrophenol molecules using novel Ti/TiO2-NiO electrodes. 289. https://doi.org/10.1016/j.molliq.2019.111108

  8. Saleh TA (2020) Trends in the sample preparation and analysis of nanomaterials as environmental contaminants. Trends Environ Anal Chem 28:00101. https://doi.org/10.1016/j.teac.2020.e00101

    Article  Google Scholar 

  9. Bin-dahman OA, Saleh A (2020) Synthesis of carbon nanotubes grafted with PEG and its efficiency for the removal of phenol from industrial wastewater. Environ Nanotechnology, Monit Manag 13:100286. https://doi.org/10.1016/j.enmm.2020.100286

    Article  Google Scholar 

  10. Senniappan S, Palanisamy S, Shanmugam S (2016) Adsorption of Pb (II) from aqueous solution by Cassia Fistula seed carbon: kinetics, equilibrium, and desorption studies. Environ Prog Sustain Energy 36(1):1–9. https://doi.org/10.1002/ep.12466

    Article  Google Scholar 

  11. Shanmughaprabha P, Sasireka S, Sabarathinam S, Selvakumari G (2019) Efficiency of may flower seed carbon to uptake Fe(II) from aqueous solution: kinetic and isotherm studies. Environ Prog Sustain Energy 38:243–249. https://doi.org/10.1002/ep.12996

    Article  Google Scholar 

  12. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci 209:172–184. https://doi.org/10.1016/j.cis.2014.04.002

    Article  Google Scholar 

  13. Crini G, Lichtfouse E, Wilson LD, Morin-Crini N (2019) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17(1):195–213. https://doi.org/10.1007/s10311-018-0786-8

    Article  Google Scholar 

  14. Srinivasan A, Viraraghavan T (2010) Decolorization of dye wastewaters by biosorbents: a review. J Environ Manage 91(10):1915–1929. https://doi.org/10.1016/j.jenvman.2010.05.003

    Article  Google Scholar 

  15. Bencheqroun Z, El I, Kachabi M, et al. (2019) Removal of basic and acid dyes from aqueous solutions using cone powder from Moroccan cypress Cupressus sempervirens as a natural adsorbent. 166:387-398. https://doi.org/10.5004/dwt.2019.24514

  16. Lúcia A, Carissimi E, Luiz G, Sander H (2018) Biosorption of rhodamine B dye from dyeing stones effluents using the green microalgae Chlorella pyrenoidosa. J Clean Prod 198:1302–1310. https://doi.org/10.1016/j.jclepro.2018.07.128

    Article  Google Scholar 

  17. El-Sheekh MM, Gharieb MM, Abou-El-Souod GW (2009) Biodegradation of dyes by some green algae and cyanobacteria. Int Biodeterior Biodegrad 63(6):699–704. https://doi.org/10.1016/j.ibiod.2009.04.010

    Article  Google Scholar 

  18. Rita de Cássia M, de Barros Gomes E, Pereira N Jr, Marin-Morales MA, Machado KMG, de Gusmão NB (2013) Biotreatment of textile effluent in static bioreactor by Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181. Bioresour Technol 142:361–367. https://doi.org/10.1016/j.biortech.2013.05.066

    Article  Google Scholar 

  19. Shanmugam S, Karthik K, Veerabagu U, Whangchai K (2021) Bi-model cationic dye adsorption by native and surface-modified Trichoderma asperellum BPL MBT1 biomass: From fermentation waste to value-added biosorbent. Chemosphere 277:130311. https://doi.org/10.1016/j.chemosphere.2021.130311

    Article  Google Scholar 

  20. Singh K, Arora S (2011) Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit Rev Environ Sci Technol 41(9):807–878. https://doi.org/10.1080/10643380903218376

    Article  Google Scholar 

  21. Sen SK, Raut S, Bandyopadhyay P, Raut S (2016) Fungal decolouration and degradation of azo dyes: a review. Fungal Biol Rev 30(3):112–133. https://doi.org/10.1016/j.fbr.2016.06.003

    Article  Google Scholar 

  22. Soares EV, Soares HMVM (2012) Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: A review. Environ Sci Pollut Res 19(4):1066–1083. https://doi.org/10.1007/s11356-011-0671-5

    Article  Google Scholar 

  23. Hittinger CT, Steele JL, Ryder DS (2018) Diverse yeasts for diverse fermented beverages and foods. Curr Opin Biotechnol 49:199–206. https://doi.org/10.1016/j.copbio.2017.10.004

    Article  Google Scholar 

  24. Danouche M, El AH, Bahafid W, El Ghachtouli N (2021) An overview of the biosorption mechanism for the bioremediation of synthetic dyes using yeast cells. Environ Technol Rev 10(1):58–76. https://doi.org/10.1080/21622515.2020.1869839

    Article  Google Scholar 

  25. Bahafid W, Joutey NT, Sayel H, Iraqui-Houssaini M, El Ghachtouli N (2013) Chromium adsorption by three yeast strains isolated from sediments in Morocco. Geomicrobiol J 30(5):422–429. https://doi.org/10.1080/01490451.2012.705228

    Article  Google Scholar 

  26. Asri M, El N, Elabed S et al (2018) Wicherhamomyces anomalus biofilm supported on wood husk for chromium wastewater treatment. J Hazard Mater 359:554–562. https://doi.org/10.1016/j.jhazmat.2018.05.050

    Article  Google Scholar 

  27. Wang W, Fan G, Li X, Fu Z, Liang X (2020) Application of Wickerhamomyces anomalus in simulated solid-state fermentation for Baijiu production: changes of microbial community structure and flavor metabolism. Front Microbiol 11:1–20. https://doi.org/10.3389/fmicb.2020.598758

    Article  Google Scholar 

  28. Schwan RF, Rodrigues LR, Teixeira KS, Gudi EJ, Dias DR, Teixeira JA (2018) Improvement of biosurfactant production by Wickerhamomyces anomalus CCMA 0358 and its potential application in bioremediation. J Hazard Mater 346:152–158. https://doi.org/10.1016/j.jhazmat.2017.12.021

    Article  Google Scholar 

  29. Ben I, Antonopoulou G, Ntaikou I et al (2019) On the evaluation of different saccharification schemes for enhanced bioethanol production from potato peels waste via a newly isolated yeast strain of Wickerhamomyces anomalus. Bioresour Technol 289:121614. https://doi.org/10.1016/j.biortech.2019.121614

    Article  Google Scholar 

  30. Kiayi Z, Lotfabad TB, Heidarinasab A, Shahcheraghi F (2019) Microbial degradation of azo dye carmoisine in aqueous medium using Saccharomyces cerevisiae ATCC 9763. J Hazard Mater 373:608–619. https://doi.org/10.1016/j.jhazmat.2019.03.111

    Article  Google Scholar 

  31. Daneshvar N, Khataee AR (2006) Treatment W. Removal of Azo Dye C.I. Acid red 14 from contaminated water using Fenton, UV/H2O2, UV/H2O2/Fe(II), UV/H2O2/Fe(III) and UV/H2O2/Fe(III)/ Oxalate Processes: A Comparative Study. J Environ Sci Heal Part A. 41(3):315–328. https://doi.org/10.1080/10934520500423196

    Article  Google Scholar 

  32. Daneshvar N, Ashassi Sorkhabi H, Kasiri MB (2004) Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections. J Hazard Mater 112(1–2):55–62. https://doi.org/10.1016/j.jhazmat.2004.03.021

    Article  Google Scholar 

  33. Samarghandi MR, Dargahi A, Zolghadr Nasab H, Ghahramani E, Salehi S (2020) Degradation of azo dye Acid Red 14 (AR14) from aqueous solution using H2O2/nZVI and S2O82–/nZVI processes in the presence of UV irradiation. Water Environ Res 92(8):1173–1183. https://doi.org/10.1002/wer.1312

    Article  Google Scholar 

  34. Idel-aouad R, Valiente M, Yaacoubi A, Tanouti B, López-Mesas M (2011) Rapid decolourization and mineralization of the azo dye C.I. Acid Red 14 by heterogeneous Fenton reaction. J Hazard Mater 186(1):745–750. https://doi.org/10.1016/j.jhazmat.2010.11.056

    Article  Google Scholar 

  35. Franca RDG, Vieira A, Carvalho G et al (2020) Oerskovia paurometabola can efficiently decolorize azo dye Acid Red 14 and remove its recalcitrant metabolite. Ecotoxicol Environ Saf 191:110007. https://doi.org/10.1016/j.ecoenv.2019.110007

    Article  Google Scholar 

  36. Danouche M, Ferioun M, Bahafid W, El Ghachtouli N (2021) Mycoremediation of azo dyes using Cyberlindnera fabianii yeast strain: application of designs of experiments for decolorization optimization. Water Environ Res 93(8):1402–1416. https://doi.org/10.1002/wer.1499

    Article  Google Scholar 

  37. Taylor P, Valderrama C, Cort JL (2008) Characterization of azo dye (acid red 14) removal with granular activated carbon: equilibrium and kinetic data. Solvent Extr Ion Exch 26(3):271–288. https://doi.org/10.1080/07366290802053504

    Article  Google Scholar 

  38. Farah JY, El-gendy NS (2013) Performance, kinetics and equilibrium in biosorption of anionic dye acid red 14 by the waste biomass of Saccharomyces cerevisiae as a low-cost biosorbent. Turkish J Eng Environ Sci 37:146–161. https://doi.org/10.3906/muh-1204-8

    Article  Google Scholar 

  39. Arami M, Yousefi N, Mohammad N, Salman N (2006) Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull. J Hazard Mater 135:171–179. https://doi.org/10.1016/j.jhazmat.2005.11.044

    Article  Google Scholar 

  40. Venkataraghavan R, Thiruchelvi R, Sharmila D (2020) Statistical optimization of textile dye effluent adsorption by Gracilaria edulis using Plackett-Burman design and response surface methodology. Heliyon 6:e05219. https://doi.org/10.1016/j.heliyon.2020.e05219

    Article  Google Scholar 

  41. Biswas S, Bal M, Behera SK, Sen TK, Meikap BC (2019) Process optimization study of Zn2+ adsorption on biochar-alginate composite adsorbent by response. Water 11(2):325. https://doi.org/10.3390/w11020325

    Article  Google Scholar 

  42. Morosanu I, Teodosiu C, Paduraru C, Ibanescu D, Tofan L (2016) Biosorption of lead ions from aqueous effluents by rapeseed biomass. N Biotechnol 39:110–124. https://doi.org/10.1016/j.nbt.2016.08.002

    Article  Google Scholar 

  43. Hadjoudja S, Deluchat V, Baudu M (2010) Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. J Colloid Interface Sci 342(2):293–299. https://doi.org/10.1016/j.jcis.2009.10.078

    Article  Google Scholar 

  44. Saleh TA (2015) Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica-multiwall carbon nanotubes. 22(21):16721–16731. https://doi.org/10.1007/s11356-015-4866-z

  45. Zehra T, Priyantha N, Lim LBL (2016) Removal of crystal violet dye from aqueous solution using yeast-treated peat as adsorbent: thermodynamics, kinetics, and equilibrium studies. Environ Earth Sci 75(4):1–15. https://doi.org/10.1007/s12665-016-5255-8

    Article  Google Scholar 

  46. Danouche M, El GN, Aasfar A, Bennis I, El AH (2022) Pb(II)-phycoremediation mechanism using Scenedesmus obliquus : cells physicochemical properties and metabolomic profiling. Heliyon 8:e08967. https://doi.org/10.1016/j.heliyon.2022.e08967

    Article  Google Scholar 

  47. Vogler EA (1998) Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface Sci 74(1–3):69–117. https://doi.org/10.1016/S0001-8686(97)00040-7

    Article  Google Scholar 

  48. Van Oss CJ, Chaudhury MK, Good RJ (1988) Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem Rev 88(6):927–941. https://doi.org/10.1021/cr00088a006

    Article  Google Scholar 

  49. Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33(4):305–325. https://doi.org/10.1093/biomet/33.4.305

    Article  MathSciNet  Google Scholar 

  50. Box GEP, Behnken DW (1960) Some new three level design for study of quantitative variables. Technometrics 2(4):455–475. https://doi.org/10.2307/1266454

    Article  MathSciNet  Google Scholar 

  51. Kousha M, Daneshvar E, Dopeikar H, Taghavi D, Bhatnagar A (2012) Box-Behnken design optimization of Acid Black 1 dye biosorption by different brown macroalgae. Chem Eng J 179:158–168. https://doi.org/10.1016/j.cej.2011.10.073

    Article  Google Scholar 

  52. Papadopoulou K, Kalagona IM, Philippoussis A, Rigas F (2013) Optimization of fungal decolorization of azo and anthraquinone dyes via Box-Behnken design. Int Biodeterior Biodegrad 77:31–38. https://doi.org/10.1016/j.ibiod.2012.10.008

    Article  Google Scholar 

  53. Bencheqroun Z, El I, Nawdali M, Benali M (2021) Adsorption removal of cationic dyes from aqueous solutions by raw and chemically activated cedar sawdust. Desalin Water Treat 240:177–190. https://doi.org/10.5004/dwt.2021.27635

    Article  Google Scholar 

  54. Daneshvar E, Vazirzadeh A, Bhatnagar A (2019) Biosorption of Methylene Blue dye onto three different marine macroalgae: effects of different parameters on isotherm, kinetic and thermodynamic. Iran J Sci Technol Trans A Sci 43(6):2743–2754. https://doi.org/10.1007/s40995-019-00764-8

    Article  Google Scholar 

  55. Smaranda C, Bulgariu D, Gavrilescu M (2009) An investigation of the sorption of Acid Orange 7 from aqueous solution onto soil. Environ Eng Manag J 8(6):1391–1402. https://doi.org/10.30638/eemj.2009.203

    Article  Google Scholar 

  56. Farah JY, El-Gendy NS, Farahat LA (2007) Biosorption of Astrazone Blue basic dye from an aqueous solution using dried biomass of Baker’s yeast. J Hazard Mater 148(1–2):402–408. https://doi.org/10.1016/j.jhazmat.2007.02.053

    Article  Google Scholar 

  57. Dilarri G, de Almeida ÉJR, Pecora HB, Corso CR (2016) Removal of dye toxicity from an aqueous solution using an industrial strain of Saccharomyces Cerevisiae (Meyen). Water Air Soil Pollut 227(8):1–11. https://doi.org/10.1007/s11270-016-2973-1

    Article  Google Scholar 

  58. Morão LG, Dilarri G, Corso CR (2017) Immobilization of Saccharomyces cerevisiae cells on Luffa cylindrica: a study of a novel material for the adsorption of textile dye. Water Air Soil Pollut 228(7):228–248. https://doi.org/10.1007/s11270-017-3433-2

    Article  Google Scholar 

  59. Samarghandi MR, Zarrabi M, Noori Sepehr M, Panahi R, Foroghi M (2012) Removal of Acid Red 14 by pumice stone as a low-cost adsorbent: kinetic and equilibrium study. Iran J Chem Chem Eng 31(3):19–27

    Google Scholar 

  60. Gao J, Wang J, Yang C, Wang S, Peng Y (2011) Binary biosorption of Acid Red 14 and Reactive Red 15 onto acid treated okara: simultaneous spectrophotometric determination of two dyes using partial least squares regression. Chem Eng J 171(3):967–975. https://doi.org/10.1016/j.cej.2011.04.047

    Article  Google Scholar 

  61. Gupta VK, Mittal A, Malviya A, Mittal J (2009) Adsorption of carmoisine A from wastewater using waste materials-Bottom ash and deoiled soya. J Colloid Interface Sci 335(1):24–33. https://doi.org/10.1016/j.jcis.2009.03.056

    Article  Google Scholar 

  62. Ahmed SM, El-Dib FI, El-Gendy NS, Sayed WM, El-Khodary M (2016) A kinetic study for the removal of anionic sulphonated dye from aqueous solution using nano-polyaniline and Baker’s yeast. Arab J Chem 9:721–728. https://doi.org/10.1016/j.arabjc.2012.04.049

    Article  Google Scholar 

  63. Bencheqroun Z, Chaouki Z, Hadri M et al (2018) Removal of textile dyes from aqueous solutions using low cost Moroccan clay. IOP Conf Ser Earth Environ Sci 161:012009. https://doi.org/10.1088/1755-1315/161/1/012009

    Article  Google Scholar 

  64. Nandi BK, Goswami A, Purkait MK (2009) Adsorption characteristics of brilliant green dye on kaolin. J Hazard Mater 161:387–395. https://doi.org/10.1016/j.jhazmat.2008.03.110

    Article  Google Scholar 

  65. Noroozi B, Sorial GA, Bahrami H, Arami M (2007) Equilibrium and kinetic adsorption study of a cationic dye by a natural adsorbent — Silkworm pupa. J Hazard Mater 139:167–174. https://doi.org/10.1016/j.jhazmat.2006.06.021

    Article  Google Scholar 

  66. Ka Yee H, McKay G, King Lun Y (2003) Selective adsorbents from chemically modified ordered mesoporous silica. Langmuir 19(7):3019–3024. https://doi.org/10.1016/s0167-2991(04)80581-0

    Article  Google Scholar 

  67. de Castro KC, Cossolin AS, Oliveira dos Reis HC, de Morais EB (2017) Biosorption of anionic textile dyes from aqueous solution by yeast slurry from brewery. Brazilian Arch Biol Technol 60:1–13. https://doi.org/10.1590/1678-4324-2017160101

    Article  Google Scholar 

  68. Freundlich H (1906) Über die Adsorption in Lösungen. Zeitschrift Für Phys Chemie 57U(1):385–470. https://doi.org/10.1515/zpch-1907-5723

    Article  Google Scholar 

  69. Aksu Z, Dönmez G (2003) A comparative study on the biosorption characteristics of some yeasts for Remazol Blue reactive dye. Chemosphere 50(8):1075–1083. https://doi.org/10.1016/S0045-6535(02)00623-9

    Article  Google Scholar 

  70. Dilarri G, Corso CR (2018) Saccharomyces cerevisiae immobilized onto cross-linked chitosan beads: application of a novel material for the removal of dye toxicity. Environ Technol (United Kingdom) 39(14):1851–1867. https://doi.org/10.1080/09593330.2017.1340351

    Article  Google Scholar 

  71. Lin HH, Stephen Inbaraj B, Kao TH (2019) Removal potential of basic dyes and lead from water by Brewer’s yeast biomass. J Am Soc Brew Chem 77(1):30–39. https://doi.org/10.1080/03610470.2018.1561794

    Article  Google Scholar 

  72. Saleh TA, Sarı A, Tuzen M (2019) Carbon nanotubes grafted with poly (trimesoyl, m-phenylenediamine) for enhanced removal of phenol. J Environ Manage 252:109660. https://doi.org/10.1016/j.jenvman.2019.109660

    Article  Google Scholar 

  73. Saleh A, Elsharif AM, Asiri S, Mohammed AI, Dafalla H (2020) Synthesis of carbon nanotubes grafted with copolymer of acrylic acid and acrylamide for phenol removal. Environ Nanotechnol Monit Manag 14:100302. https://doi.org/10.1016/j.enmm.2020.100302

    Article  Google Scholar 

  74. Ami D, Posteri R, Mereghetti P, Porro D, Doglia SM, Branduardi P (2014) Fourier transform infrared spectroscopy as a method to study lipid accumulation in oleaginous yeasts. Biotechnol Biofuels 7(1):1–14. https://doi.org/10.1186/1754-6834-7-12

    Article  Google Scholar 

  75. Zhang Y, Liu W, Xu M, Zheng F, Zhao M (2010) Study of the mechanisms of Cu 2 + biosorption by ethanol /caustic-pretreated baker ’s yeast biomass. J Hazard Mater 178(1–3):1085–1093. https://doi.org/10.1016/j.jhazmat.2010.02.051

    Article  Google Scholar 

  76. Saleh A (2017) Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon. J Clean Prod 172:2123–2132. https://doi.org/10.1016/j.jclepro.2017.11.208

    Article  Google Scholar 

  77. Paula A, Maria G, Gabriela A et al (2016) Biosorption of anthocyanins from grape pomace extracts by waste yeast: kinetic and isotherm studies. J Food Eng 169:53–60. https://doi.org/10.1016/j.jfoodeng.2015.08.016

    Article  Google Scholar 

  78. Naja G, Volesky B (2011) The mechanism of metal cation and anion biosorption. In Microbial Biosorption of Metals (Pp. 19–58). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-0443-5

  79. Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84(1):13–28. https://doi.org/10.1002/jctb.1999

    Article  Google Scholar 

  80. Vitor V, Corso CR (2008) Decolorization of textile dye by Candida albicans isolated from industrial effluents. J Ind Microbiol Biotechnol 35(11):1353–1357. https://doi.org/10.1007/s10295-008-0435-5

    Article  Google Scholar 

  81. Khaled B, Nassira Z, Imene H (2020) Eco-friendly synthesis of self-regenerative low-cost biosorbent by the incorporation of CuO: a photocatalyst sensitive to visible light irradiation for azo dye removal. Environ Sci Pollut Res 27(25):31074–31091. https://doi.org/10.1007/s11356-020-09364-1

    Article  Google Scholar 

  82. Stewart GG (2017) The structure and function of the yeast cell wall, plasma membrane and periplasm. In: Brewing and distilling yeasts. Springer, Cham:55–75. https://doi.org/10.1007/978-3-319-69126-8_5

  83. Fomina M, Gadd GM (2014) Biosorption: Current perspectives on concept, definition and application. Bioresour Technol 160:3–14. https://doi.org/10.1016/j.biortech.2013.12.102

    Article  Google Scholar 

  84. Danouche M, El Ghachtouli N, El Arroussi H (2021) Phycoremediation mechanisms of heavy metals using living green microalgae: physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 7:e07609. https://doi.org/10.1016/j.heliyon.2021.e07609

    Article  Google Scholar 

  85. Akar T, Anilan B, Gorgulu A, Tunali S (2009) Assessment of cationic dye biosorption characteristics of untreated and non-conventional biomass: Pyracantha coccinea berries. J Hazard Mater 168:1302–1309. https://doi.org/10.1016/j.jhazmat.2009.03.011

    Article  Google Scholar 

  86. Tazhibaeva SM, Musabekov KB, Orazymbetova AB, Zhubanova AA (2003) Surface properties of yeast cells. Colloid J 65(1):122–124. https://doi.org/10.1023/A:1022391613491

    Article  Google Scholar 

  87. Lin DQ, Brixius PJ, Hubbuch JJ, Thömmes J, Kula MR (2003) Biomass/adsorbent electrostatic interactions in expanded bed adsorption: a zeta potential study. Biotechnol Bioeng 83(2):149–157. https://doi.org/10.1002/bit.10654

    Article  Google Scholar 

  88. Dundar M, Nuhoglu C, Nuhoglu Y (2008) Biosorption of Cu (II) ions onto the litter of natural trembling poplar forest.151:86–95 https://doi.org/10.1016/j.jhazmat.2007.05.055

  89. Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26(3):239–256. https://doi.org/10.1111/j.1574-6976.2002.tb00613.x

    Article  Google Scholar 

  90. Garcia-rubio R, De OHC, Rivera J, Niño-vega GA, Hall RA (2020) The fungal cell wall: Candida. Cryptococcus Aspergillus Species 10:1–13. https://doi.org/10.3389/fmicb.2019.02993

    Article  Google Scholar 

  91. Lucas MS, Amaral C, Sampaio A, Peres JA, Dias AA (2006) Biodegradation of the diazo dye Reactive Black 5 by a wild isolate of Candida oleophila. Enzyme Microb Technol 39(1):51–55. https://doi.org/10.1016/j.enzmictec.2005.09.004

    Article  Google Scholar 

  92. Vaca-medina G, Martin-yken H, Vernhet A, Schmitz P, Mercier-bonin M (2006) Shear-flow induced detachment of Saccharomyces cerevisiae from stainless steel: Influence of yeast and solid surface properties. Colloids Surfaces B Biointerfaces 49:126–135. https://doi.org/10.1016/j.colsurfb.2006.03.001

    Article  Google Scholar 

  93. Vichi S, Gallardo-chacón JJ, Pradelles R, Chassagne D, López-tamames E, Buxaderas S (2010) Surface properties of Saccharomyces cerevisiae lees during sparkling wine ageing and their effect on flocculation. Int J Food Microbiol 140(2–3):125–130. https://doi.org/10.1016/j.ijfoodmicro.2010.04.009

    Article  Google Scholar 

  94. Suzzi G, Romano P, Vannini L (1994) Cell surface hydrophobicity and flocculence in Saccharomyces cerevisiae wine yeasts. Colloids Surfaces B Biointerfaces 2(5):505–510. https://doi.org/10.1016/0927-7765(94)80058-8

    Article  Google Scholar 

  95. Van Der MHC, Bos R, Busscher HJ (1998) A reference guide to microbial cell surface hydrophobicity based on contact angles. Colloids Surfaces B Biointerfaces 11(4):213–221. https://doi.org/10.1016/s0927-7765(98)00037-x

    Article  Google Scholar 

  96. Jazm A, Lucho-constantino CA, Icela R, Coronel-olivares C, Gabriela AV (2020) Biosorption of water pollutants by fungal pellets. Water 12(4):1155. https://doi.org/10.3390/w12041155

    Article  Google Scholar 

  97. Fu Y, Viraraghavan T (2002) Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Adv Environ Res 7(1):239–247. https://doi.org/10.1016/S1093-0191(01)00123-X

    Article  Google Scholar 

  98. Binupriya AR, Sathishkumar M, Kavitha D, Swaminathan K, Yun SE (2007) Aerated and rotated mode decolorization of a textile dye solution by native and modified mycelial biomass of Trametes versicolor. J Chem Technol Biotechnol 82(4):350–359. https://doi.org/10.1002/jctb

    Article  Google Scholar 

  99. Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26(3):266–291. https://doi.org/10.1016/j.biotechadv.2008.02.002

    Article  Google Scholar 

  100. El-Naggar N and El-MalkeyA (2020) Eco-friendly approach for biosorption of Pb2+ and carcinogenic Congo red dye from binary solution onto sustainable Ulva lactuca biomass. Sci Rep 1-22. https://doi.org/10.1038/s41598-020-73031-1

Download references

Acknowledgements

The authors gratefully acknowledge the Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), and the Regional University Centre of Interface (CURI), Sidi Mohamed Ben Abdellah University for their financial and technical support.

Author information

Authors and Affiliations

Authors

Contributions

Danouche M.: conceptualization, methodology, formal analysis, writing—original draft, visualization, writing—review and editing

El Arroussi H.: supervision, writing—review and editing, resources, funding acquisition

El Ghachtouli N.: supervision, writing—review and editing, validation, funding acquisition, project leading

Corresponding author

Correspondence to M. Danouche.

Ethics declarations

Ethical approval

This is the original work of the authors. The work described has not been submitted elsewhere for publication, in whole or in part, and all authors listed carried out the data analysis and manuscript writing. Moreover, all authors read and approved the final manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danouche, M., El Arroussi, H. & El Ghachtouli, N. Bioremoval of Acid Red 14 dye by Wickerhamomyces anomalus biomass: kinetic and thermodynamic study, characterization of physicochemical interactions, and statistical optimization of the biosorption process. Biomass Conv. Bioref. 14, 2829–2848 (2024). https://doi.org/10.1007/s13399-022-02711-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02711-x

Keywords

Navigation