Skip to main content
Log in

Biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolyesters produced byAlcaligenes sp. MT-16

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3HB-co-3HV), copolyesters, with 3-hydroxyvalerate (3HV) contents ranging from 17 to 60 mol%, were produced byAlcaligenes sp. MT-16, and their biocompatibility evaluated by the growth of Chinese hamster ovary (CHO) cells and the adsorption of blood proteins and platelets onto their film surfaces. The number of CHO cells that adhered to and grew on these films was higher with increasing 3HV content. In contrast, the tendency for blood proteins and platelets to adhere to the copolyester surfaces significantly decreased with increasing 3HV content. Examination of the surface morphology using atomic force microscopy revealed that the surface roughness was an important factor in determining the biocompatibility of theses copolyesters. The results obtained in this study suggest that poly(3HB-co-3HV) copolyesters, with >30 mol% 3HV, may be useful in biocompatible biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinbüchel, A. and T. Lutke-Eversloh (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms.Biochem. Eng. J. 16: 81–96.

    Article  CAS  Google Scholar 

  2. Zinn, M., B. Witholt, and T. Egli (2001) Occurrence, synthesis, and medical application of bacterial polyhydroxyalkanoate.Adv. Drug. Deliv. Rev. 53: 5–21.

    Article  CAS  Google Scholar 

  3. Williams, S. F., D. P. Martin, D. M. Horowitz, and O. P. Peoples (1999) PHA applications: addressing the price issue: 1. Tissue engineering.Int. J. Biol. Macromol. 25: 111–121.

    Article  CAS  Google Scholar 

  4. Feng, L., N. Yoshie, N. Asakawa, and Y. Inoue (2004) Comonomer-unit compositions, physical properties and biodegradability of bacterial copolyhydroxyalkanoates.Macromol. Biosci. 4: 186–198.

    Article  CAS  Google Scholar 

  5. Doi, Y. (1990) Microbial polyester. VCH pulicher, Inc., New York, NY, USA.

    Google Scholar 

  6. Ramsay, B. A., K. Lomaliza, C. Chavarie, B. Dube, P. Bataille, and J. A. Ramsay (1990) Production of poly-(β-hydroxybutyric-co-β-hydroxyvaleric) acid.Appl. Environ. Microbiol. 56: 2095–2098.

    Google Scholar 

  7. Reusch, R. N. (1995) Low molecular weight complexed poly(3-hydroxybutyrate): a dynamic and versatile moleculein vivo.Can. J. Microbiol. 41 Suppl: 50–54.

    Article  Google Scholar 

  8. Tezcaner, A., K. Bugra, and V. Hasirci (2003) Retinal pigment epithelium cell culture on surface modified poly(hydroxybutyrate-co-hydroxyvalerate) thin films.Biomaterials 24: 4573–4583.

    Article  CAS  Google Scholar 

  9. Gogolewski, S., M. Jovanovic, S. M. Perren, J. G. Dillon, and M. K. Hughes (1993) Tissue response andin vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA).J. Biomed. Mater. Res. 27: 1135–1148.

    Article  CAS  Google Scholar 

  10. Rouxhet, L., F. Duhoux, O. Borecky, R. Legras, and Y. J. Schneider (1998) Adsorption of albumin, collagen, and fibronection on the surface of poly(hydroxybutyrate-hydroxyvalerate) (PHB/HV) and of poly (epsilon-caprolactone) (PCL) films modified by an alkaline hydrolysis and of poly (ethylene terephtalate) (PET) track-etched membranes.J. Biomater. Sci. Polym. Edn. 9: 1279–1304.

    Article  CAS  Google Scholar 

  11. Choi, G. G., M. W. Kim, J. Y. Kim, and Y. H. Rhee (2003) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with high molar fractions of 3-hydroxyvalerate by a threonine-overproducing mutant ofAlcaligenes sp. SH-69.Biotechnol. Lett. 25: 665–670.

    Article  CAS  Google Scholar 

  12. Choi, G. G., H. W. Kim, and Y. H. Rhee (2004) Enzymatic and non-enzymatic degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolyesters produced byAlcaligenes sp. MT-16.J. Microbiol. 42: 346–352.

    CAS  Google Scholar 

  13. Chung, S. H., G. G. Choi, H. W. KIm, and Y. H. Rhee (2001) Effect of levulinic acid on the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) byRalstonia eutropha KHB-8862.J. Microbiol. 39: 79–82.

    CAS  Google Scholar 

  14. Kim, Y. B., D. Y. Kim, and Y. H. Rhee (1999) PHAs produced byPseudomonas putida andPseudomonas oleovorans grown withn-alkanoic acids containing aromatic groups.Macromolecules 32: 6058–6064.

    Article  CAS  Google Scholar 

  15. Choi, J. I. and S. Y. Lee (2004) High level production of supra molecular weight poly(3-hydroxybutyrate) by metabolically engineeredEscherichia coli.Biotechnol. Bioprocess Eng. 9: 196–200.

    Article  CAS  Google Scholar 

  16. Kang, H. O., C. W. Chung, H. W. Kim, Y. B. Kim, and Y. H. Rhee (2001) Cometabolic biosynthesis of copolyesters consisting of 3-hydroxyvalerate and medium-chain-length 3-hydroxyalkanoates byPseudomonas sp. DSY-82.Antonie Van Leeuwenhoek 80: 185–191.

    Article  CAS  Google Scholar 

  17. Amiji, M. and K. Park (1993) Surface modification of polymeric biomaterials with poly(ethylene oxide), albumin, and heparin for reduced thrombogenicity.J. Biomater. Sci. Polym. Edn. 4: 217–234.

    Article  CAS  Google Scholar 

  18. Kottke-Marchant, K., J. M. Anderson, Y. Umemura, and R. E. Marchant (1989) Effect of albumin coating on thein vitro blood compatibility of Dacron® arterial prostheses.Biomaterials 10: 147–155.

    Article  CAS  Google Scholar 

  19. Hahn, S. K. and A. S. Hoffman (2004) Characterization of biocompatible polyelectrolyte complex multilayer of hyaluronic acid and poly-L-lysine.Biotechnol. Bioprocess Eng. 9: 179–183.

    Article  CAS  Google Scholar 

  20. Hahn, S. K., R. Ohri, and C. M. Giachelli (2005) Anticalcification of bovine pericardium for bioprosthetic heart valves after surface modification with hyaluronic acid derivatives.Biotechnol. Bioprocess Eng. 10: 218–224.

    Article  CAS  Google Scholar 

  21. Fujimoto, K., H. Inoue, and Y. Ikada (1993) Protein adsorption and platelet adhesion onto polyurethane grafted with methoxy-poly(ethylene glycol) methacrylate by plasma technique.J. Biomed. Mater. Res. 27: 1559–1567.

    Article  CAS  Google Scholar 

  22. Chung, C. W., H. W. Kim, Y. B. Kim, and Y. H. Rhee (2003) Poly(ethylene glycol)-grafted poly(3-hydroxyundecenoate) networks for enhanced blood compatibility.Int. J. Biol. Macromol. 32: 17–22.

    Article  CAS  Google Scholar 

  23. Lee, J. H., J. W. Lee, G. S. Khang, and H. B. Lee (1997) Interaction of cells on chargeable functional group gradient surfaces.Biomaterials 18: 351–358.

    Article  CAS  Google Scholar 

  24. Zao, K., Y. Deng, and G. Q. Chen (2003) Effects of surface morphology on the biocompatibility of polyhydroxyalkanoates.Biochem. Eng. J. 16: 115–123.

    Article  CAS  Google Scholar 

  25. Kim, S. S., H. W. Kim, S. H. Yuk, S. Y. Oh, P. K. Pak, and H. B. Lee (1995) Blood and cell compatibility of gelatincarrageenan mixtures cross-linked by glutaraldehyde.Biomaterials 17: 813–821.

    Article  Google Scholar 

  26. Kim, Y. H., D. K. Han, K. D. Park, and S. H. Kim (2003) Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept.Biomaterials 24: 2213–2223.

    Article  CAS  Google Scholar 

  27. Kurano, N., C. Leist, F. Messi, S. Kurano, and A. Fiechter (1990) Growth behavior of Chinese hamster ovary cells in a compact loop bioreactor. 2. Effects of medium components and waste products.J. Biotechnol. 15: 113–128.

    Article  CAS  Google Scholar 

  28. Washburn, N. R., K. M. Yamada, C. G. Simon, Jr., S. B. Kennedy, and E. J. Amis (2004) High-throughput investigation of osteoblast response to polymer crystallinity: Influence of nanometer-scale roughness on proliferation.Biomaterials 25: 1215–1224.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Ha Rhee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, G.G., Kim, H.W., Kim, Y.B. et al. Biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolyesters produced byAlcaligenes sp. MT-16. Biotechnol. Bioprocess Eng. 10, 540–545 (2005). https://doi.org/10.1007/BF02932291

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932291

Keywords

Navigation