Skip to main content
Log in

Anti-calcification of bovine pericardium for bioprosthetic heart valves after surface modification with hyaluronic acid derivatives

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Surface modification of glutaraldehyde fixed bovine pericardium (GFBP) was successfully carried out with hyaluronic acid (HA) derivatives. At first, HA was chemically modified with adipic dihydrazide (ADH) to introduce hydrazide functional group into the carboxyl group of HA backbone. Then, GFBP was surface modified by grafting HA-ADH to the free aldehyde groups on the tissue and the subsequent HA-ADH hydrogel coating. HA-ADH hydrogels could be prepared through selective crosslinking at low pH between hydrazide groups of HA-ADH and crosslinkers containing succinimmidyl moieties with minimized protein denaturation. When HA-ADH hydrogels were prepared at low pH of 4.8 in the presence of erythropoietin (EPO) as a model protein, EPO release was continued up to 85% of total amount of loaded EPO for 4 days. To the contrary, only 30% of EPO was released from HA-ADH hydrogels prepared at pH=7.4, which might be due to the denaturation of EPO during the crosslinking reaction. Because the carboxyl groups on the glucuronic acid residues are recognition sites for HA degradation by hyaluronidase, the HA-ADH hydrogels degraded more slowly than HA hydrogels prepared by the crosslinking reaction of divinyl sulfone with hydroxyl groups of HA. Following a two-week subcutaneous implantation in osteopontin-null mice, clinically significant levels of calcification were observed for the positive controls without any surface modification. However, the calcification of surface modified GFBP with HA-ADH and HA-ADH hydrogels was drastically reduced by more than 85% of the positive controls. The anti-calcification effect of HA surface modification was also confirmed by microscopic analysis of explan ted tissue after staining with Alizarin Red S for calcium, which followed the trend as observed with calcium quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohri, R., S. K. Hahn, P. S. Stayton, A. S. Hoffman, and M. Giachelli (2004) Hyaluronic acid grafting mitigates calcification of glutaraldhyde-fixed bovine pericardium.J. Biomed. Mater. Res. 70A: 159–165.

    Article  CAS  Google Scholar 

  2. Golomb, G., F. J. Schoen, M. S. Smith, J. Linden, M. Dixon, and R. J. Levy (1987) The role of glutaraldehyde-induced cross-links in calcification of bovine pericardium used in cardiac valve bioprostheses.Am. J. Pathol. 127: 122–130.

    CAS  Google Scholar 

  3. Kim, K. M. (1995) Apoptosis and calcification.Scanning Microscopy 9: 1137–1175.

    CAS  Google Scholar 

  4. Schoen, F. J. and R. J. Levy (1999) Tissue heart valves: Current challenges and future research perspectives.J. Biomed. Mater. Res. 47: 439–465.

    Article  CAS  Google Scholar 

  5. Vyavahare, N., M. Ogle, F. J. Schoen,et al. (1999) Mechanisms of bioprosthetic heart valve failure: Fatigue causes collagen denaturation and glycosaminoglycan loss.J. Biomed. Mater. Res. 46: 44–50.

    Article  CAS  Google Scholar 

  6. Lovekamp, J. and N. Vyavahare (2001) Periodate-mediated glycosaminoglycan stabilization in bioprosthetic heart valves.J. Biomed. Mater. Res. 56: 478–486.

    Article  CAS  Google Scholar 

  7. Hunter, G. K., K. S. Wong and J. J. Kim (1988) Binding of calcium to glycosaminoglycans: An equilibrium dialysis study.Arch. Biochem. Biophys. 260: 161–167.

    Article  CAS  Google Scholar 

  8. Adrian-Scotto, M., M. Guibbolini, G. Mallet, M. Gaysinski, and D. Vasilescu (2002)23Na NMR study of the interaction between hyaluronan and the bications Ca(++), Mg(++) and Cu(++).J. Biomol. Struct. Dyn. 19: 715–724.

    CAS  Google Scholar 

  9. Chang, N. S. and R. J. Boackle (1985) Hyaluronic acid-complement interactions-II. Role of divalent cations and gelatin.Mol. Immunol. 22: 843–848.

    Article  CAS  Google Scholar 

  10. Vercruysse, K. P., M. R. Ziebell, and G. D. Prestwich (1999) Control of enzymatic degradation of hyaluronan by divalent cations.Carbohydr. Res. 318: 26–37.

    Article  CAS  Google Scholar 

  11. Laurent, T. C. (1998)The Chemistry, Biology and Medical Applications of Hyaluronan and its Derivatives.Wenner-Gren International Series. Vol 72. Portland Press, London, UK.

    Google Scholar 

  12. Fraser, J. R., T. C. Laurent, and U. B. Laurent (1997) Hyaluronan: Its nature, distribution, functions and turnover.J. Intern. Med. 242: 27–33.

    Article  CAS  Google Scholar 

  13. Fukuda, K., H. Dan, M. Takayama, F. Kumano, M. Saitoh, and S. Tanaka (1996) Hyaluronic acid increase proteoglycan synthesis in bovine articular cartilage in the presence of interleukin-1.J. Pharmacol. Exp. Ther. 277: 1672–1675.

    CAS  Google Scholar 

  14. Goa, K. L. and P. Benfield (1994) Hyaluronic acid. A review of its pharmacology and use as a surgical aid in ophthalmology, and its therapeutic potential in joint discase and wound healing.Drugs 47: 536–566.

    Article  CAS  Google Scholar 

  15. Balazs, E. A. and J. L. Delinger (1993) Viscosupplementation: A new concept in the treatment of osteoarthritis.J. Rheumatol. Suppl. 39: 3–9.

    CAS  Google Scholar 

  16. Balazs, E. A. (1983) Sodium hyaluronate and viscosurgery. pp. 5–28. In: D. Miller and R. Stegmann (eds.).Healon (Sodium Hyaluronate). A Guide to Its Use in Ophthalmic Surgery. Wiley, NY, USA.

    Google Scholar 

  17. Balazs, E. A. and A. Leshchiner (1986) Cross-linked gels of hyaluronic acid and products containing such gels.US Patent 4,582,865.

  18. Kuo, J. W., D. A. Swann, and G. D. Prestwich (1991) Chemical modification of hyaluronic acid by carbodiimides.Bioconjug. Chem. 2: 232–241.

    Article  CAS  Google Scholar 

  19. Illum, L., N. F. Farraj, A. N. Fisher, I. Gill, M. Miglietta, and L. M. Benedetti (1994) Hyaluronic acid ester microspheres as a nasal delivery system.J. Control. Rel. 29: 133–141.

    Article  CAS  Google Scholar 

  20. Hahn, K. K. and A. S. Hoffman (2004) Characterization of biocompatible polyelectrolyte complex multiplayer of hyaluronic acid and poly-l-lysin.Biotechnol. Bioprocess Eng. 9: 179–183.

    Article  CAS  Google Scholar 

  21. Yeo, Y., N. Bae, and K. Park (2001) Microencapsulation methods for delivery of protein drugs.Biotechnol. Bioprocess Eng. 4: 205–212.

    Google Scholar 

  22. Shu, X. Z., Y. Liu, F. Palumbo, and G. D. Prestwich (2003) Disulfide-crosslinked hyaluronan-gelatin hydrogel films: A covalent mimic of the extracellular matrix forin vitro cell growth.Biomaterials 24: 3825–3834.

    Article  CAS  Google Scholar 

  23. Haln, S. K., S. Jelacic, R. V. Maier, P. S. Stayton, and A. S. Hoffman (2004) Anti-inflammatory drug delivery from hyaluronic acid hydrogels.J. Biomat. Sci. Polym. Ed. 15: 1111–1119.

    Article  Google Scholar 

  24. Steitz, S. A., M. Y. Speer, M. D. McKee,et al. (2002) Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification.Am. J. Pathol. 161: 2035–2046.

    CAS  Google Scholar 

  25. Pouyani, T. and G. D. Prestwich (1994) Functionalized derivatives of hyaluronic acid oligosaccharides: Drug carriers and novel biomaterials.Bioconjug. Chem. 5: 339–347.

    Article  CAS  Google Scholar 

  26. Bitter, T. and H. Muir (1962) A modified uronic acid carbazole reaction.Anal. Biochem. 4: 330–334.

    Article  CAS  Google Scholar 

  27. Liaw, L., D. E. Birk, C. B. Ballas, J. S. Whitsitt, J. M. Davidson, and B. L. Hogan (1998) Altered wound heating in mice lacking a functional osteopontin gene (spp1).J. Clin. Invest. 101: 1468–1478.

    CAS  Google Scholar 

  28. Bulpitt, P. and D. Aeschlimann (1999) New strategy for chemical modification of hyaluronic acid: Preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels.J. Biomed. Mater. Res. 47: 152–169.

    Article  CAS  Google Scholar 

  29. Hermanson, G. T. (1996)Bioconjugate Techniques. pp. 121. Academic Press, San Diego, USA.

    Google Scholar 

  30. Giachelli, C. M. and S. Steitz (2000) Osteopontin: A versatile regulator of inflammation and biomineralization.Matr. Biol. 19: 615–622.

    Article  CAS  Google Scholar 

  31. Lee, W. K., K. D. Park, D. K. Han, H. Suh, J. C. Park, and Y. H. Kim (2000) Heparinized bovine pericardium as a novel cardiovascular bioprosthesis.Biomaterials 21: 2323–2330.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sei Kwang Hahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, S.K., Ohri, R. & Giachelli, C.M. Anti-calcification of bovine pericardium for bioprosthetic heart valves after surface modification with hyaluronic acid derivatives. Biotechnol. Bioprocess Eng. 10, 218–224 (2005). https://doi.org/10.1007/BF02932016

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932016

Keywords

Navigation