Skip to main content
Log in

Protective role of mitochondrial superoxide dismutase against high osmolarity, heat and metalloid stress inSaccharomyces cerevisiae

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Superoxide dismutases, both cytosolic Cu,Zn-SOD encoded bySOD1 and mitochondrial Mn-SOD encoded bySOD2, serveSaccharomyces cerevisiae cells for defense against the superoxide radical but the phenotypes ofsod1Δ andsod2Δ mutant strains are different. Compared with the parent strain and thesod1Δ mutant, thesod2Δ mutant shows a much more severe growth defect at elevated salt concentrations, which is partially rescued by 2 mmol/L glutathione. The growth of all three strains is reduced at 37 °C, thesod2Δ showing the highest sensitivity, especially when cultured in air. Addition of 1 mmol/L glutathione to the medium restores aerobic growth of thesod1Δ mutant but has only a minor effect on the growth of thesod2Δ strain at 37 °C. Thesod2Δ strain is also sensitive to AsIII and AsV and its sensitivity is much more pronounced under aerobic conditions. These results suggest that, unlike the Sod1p protein, whose major role is oxidative stress defense, Sod2p also plays a role in protectingS. cerevisiae cells against other stresses — high osmolarity, heat and metalloid stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PDS:

post-diauxic-shift (element)

ROS:

reactive oxygen species

SOD:

superoxide dismutase (EC 1.15.1.1)

STRE:

stress response (element)

Cu,Zn-SOD (SOD1):

cytosolic superoxide dismutase

Mn-SOD (SOD2):

mitochondrial superoxide dismutase

References

  • Adamis P.D.B., Gomes D.S., Pereira M.D., Mesquita J.F., Pinto M.L.C.C., Panek A.D., Eleutherio E.C.A.: The effect of superoxide dismutase deficiency on cadmium stress.J.Biochem.Mol.Toxicol. 18, 1–6 (2004).

    Article  CAS  Google Scholar 

  • Avery S.V.: Metal toxicity in yeast and the role of oxidative stress.Adv.Appl.Microbiol. 49, 111–142 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Balzi E., Chen W., Ułaszewski S., Capieaux E., Goffeau A.: The multidrug resistance gene PDR1 fromSaccharomyces cerevisiae.J.Biol.Chem. 262, 16871–16879 (1987).

    PubMed  CAS  Google Scholar 

  • Bobrowicz P., Wysocki R., Owsianik G., Goffeau G., Ułaszewski S.: Isolation of three contiguous genes,ACR1, ACR2 andACR3, involved in resistance to arsenic compounds in the yeastSaccharomyces cerevisiae.Yeast 13, 819–828 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Bonneaud N., Ozier-Kalogeropoulos O., Li G.Y., Labouresse M., Minvielle-Sebastia L., Lacroute F.: A family of low and high copy replicative, integrative and single-strandedS. cerevisiae/E. coli shuttle vectors.Yeast 7, 609–615 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Brennen R.J., Schiestl R.H.: Cadmium is an inducer of oxidative stress in yeast.Mutat.Res. 356, 171–178 (1996).

    Google Scholar 

  • Clemens S., Kim E.J., Neumann D., Schroeder J.I.: Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast.EMBO J. 18, 3325–3333 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Costa V., Amorim M.A., Reis E., Quintanilha A., Moradas-Ferreira P.: Mitochondrial superoxide dismutase is essential for ethanol tolerance of in the post-diauxic phase.Microbiology 143, 1649–1656 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Cyrne L., Martins L., Fernandes L., Marinho H.S.: Regulation of antioxidant enzymes gene expression in the yeastSaccharomyces cerevisiae during stationary phase.Free Rad.Biol.Med. 34, 385–393 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P., Jiou L-L., Moy V.N., Diaspro A., Valentine J.S., Gralla E.B., Longo V.D.:SOD2 functions downstream ofSch9 to extend longevity in yeast.Genetics 163, 35–46 (2003).

    PubMed  CAS  Google Scholar 

  • Flattery-O’Brien J.A., Grant C.M., Dawes I.W.: Stationary-phase dependent regulation of theSaccharomyces cerevisiae SOD2 gene is dependent on additive effects of HAP2/3/4/5- and STRE-binding elements.Mol.Microbiol. 23, 303–312 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Gralla E.B., Thiele D.J., Silar P., Valentine J.S.: ACE1, a copper-dependent transcription factor, activates expression of the yeast copper, zinc superoxide dismutase gene.Proc.Nat.Acad.Sci.USA 88, 8558–8562 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Gralla E.B., Kosman D.J.: Molecular genetics of superoxide dismutases in yeast and related fungi.Adv.Genet. 30, 251–319 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Güldener U., Heck S., Fiedler T., Beinhauer J., Hegemann J.H.: A new efficient gene disruption cassette for repeated use in budding yeast.Nucl.Acids Res. 24, 2519–2524 (1996).

    Article  PubMed  Google Scholar 

  • Hwang C.-S., Rhie G.-E., Oh J.-H.: Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection ofCandida albicans against oxidative stresses and the expression of its full virulence.Microbiology 148, 3705–3713 (2002).

    PubMed  CAS  Google Scholar 

  • Hwang C.-H., Baek Y.-U., Yim H.-S., Kang S.-O.: Protective roles of mitochondrial manganese-containing superoxide dismutase against various stresses inCandida albicans.Yeast 20, 929–941 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Ito H., Fukuda Y., Murata K., Kimura A.: Transformation of intact yeast cells treated with alkali cations.J.Bacteriol. 153, 163–168 (1983).

    PubMed  CAS  Google Scholar 

  • Jamieson D.J.: Oxidative stress responses of the yeastSaccharomyces cerevisiae.Yeast 14, 1511–1527 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Jeong J.-H., Kwon E.-S., Roe J.-H.: Characterization of the manganese-containing superoxide dismutase and its gene regulation in stress response ofSchizosaccharomyces pombe.Biochem.Biophys.Res.Commun. 283, 908–914 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Krasowska A., Oświęcimska M., Pasternak A., Chmielewska L., Witek S., Sigler K.: New phenolic antioxidants of PYA and PYE classes increase the resistance ofS. cerevisiae strain SP4, its SOD- and catalase-deficient mutants to lipophilic oxidants.Folia Microbiol. 44, 657–662 (1999).

    Article  CAS  Google Scholar 

  • Krasowska A., Łukaszewicz M., Oświęcimska M., Witek S., Sigler K.: Spontaneous and radical-induced plasma membrane lipid peroxidation in differently oxidant-sensitive yeast species and its suppression by antioxidants.Folia Microbiol. 45, 509–514 (2000).

    Article  CAS  Google Scholar 

  • Krasowska A., Dziadkowiec D., Łukaszewicz M., Wojtowicz K., Sigler K.: Effect of antioxidants onSaccharomyces cerevisiae mutants deficient in superoxide dismutases.Folia Microbiol. 48, 754–760 (2003).

    Article  CAS  Google Scholar 

  • Krasowska A., Piasecki A., Polinceusz A., Prescha A., Sigler K.: Amphiphilic amine-N-oxides with aliphatic alkyl chain act as efficient superoxide dismutase mimics, antioxidants and lipid peroxidation blockers in yeast.Folia Microbiol. 50, 99–108 (2005).

    Article  Google Scholar 

  • Longo V.D., Gralla E.B., Valentine J.S.: Superoxide dismutase activity is essential for stationary phase survival inSaccharomyces cerevisiae.J.Biol.Chem. 271, 12275–12280 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Pereira M.D., Herdeiro R.S., Fernandes P.N., Eleutherio E.C.A., Panek A.D.: Targets of oxidative stress in yeastsod mutants.Biochim.Biophys.Acta 1620, 245–251 (2003).

    PubMed  CAS  Google Scholar 

  • Piper P.W.: The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap.FEMS Microbiol. Lett. 134, 121–127 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Gabriel M.A., Russell P.: Distinct signaling pathways respond to arsenite and reactive oxygen species inSchizosaccharomyces pombe.Eukaryotic Cell 4, 1396–1402 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Saccharomyces Genome Database:http://www.yeastgenome.org/.

  • Sigler K., Chaloupka J., Brozmanová J., Stadler N., Höfer M.: Oxidative stress in microorganisms. I. Microbialversus higher cells — damage and defenses in relation to cell aging and death.Folia Microbiol. 44, 587–624 (1999).

    Article  CAS  Google Scholar 

  • Sturtz L.A., Diekert K., Jensen L.T., Lill R., Culotta V.C.: A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localized to the intermembrane space of mitochondria.J.Biol.Chem. 276, 38084–38089 (2001).

    PubMed  CAS  Google Scholar 

  • Sturtz L.A., Culotta V.C.: Superoxide dismutase null mutants of baker’s yeast,Saccharomyces cerevisiae.Meth.Enzymol. 349, 167–172 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama K., Izawa S., Inoue Y.: The Yaplp-dependent induction of glutathione synthesis in heat shock response ofSaccharomyces cerevisiae.J.Biol.Chem. 275, 15535–15540 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Wallace M.A., Jiou L.-L., Martins J., Clement M.H.S., Bailey S., Longo V.D., Valentine J.S., Gralla E.B.: Superoxide inhibits 4Fe-4S cluster enzymes involved in amino acid biosynthesis.J.Biol.Chem. 279, 32055–32062 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Wysocki R., Clemens S., Augustyniak D., Golik P., Maciaszczyk E., Tamas M.J., Dziadkowiec D.: Metalloid tolerance based on phytochelatins is not functionally equivalent to the arsenite transporter Acr3p.Biochem.Biophys.Res.Commun. 304, 293–300 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Wysocki R., Fortier P.-K., Maciaszczyk E., Thorsen M., Leduc A., Odhagen A., Owsianik G., Ułaszewski S., Ramotar D., Tamas M.J.: Transcriptional activation of metalloid tolerance genes inSaccharomyces cerevisiae requires the AP-1-like proteins Yap1p and Yap8p.Mol.Biol.Cell 15, 2049–2060 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dziadkowiec.

Additional information

The work was supported by theMinistry of Education, Youth and Sports of the Czech Republic (Research Center 1M0570) and by theResearch Concept of the Institute of Microbiology AV 0Z 5020 0510.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dziadkowiec, D., Krasowska, A., Liebner, A. et al. Protective role of mitochondrial superoxide dismutase against high osmolarity, heat and metalloid stress inSaccharomyces cerevisiae . Folia Microbiol 52, 120–126 (2007). https://doi.org/10.1007/BF02932150

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932150

Keywords

Navigation