Skip to main content
Log in

Detection of lateral heterogeneity in the cytoplasmic membrane ofBacillus subtilis

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Lateral heterogeneity in the cytoplasmic membrane ofBacillus subtilis was found by using density gradient centrifugation. Crude membranes (CM) present in the whole cell lysate were separated into three fractions of increasing density (F, CI, CII). Substantial difference exists in the amount of protein recovered from these fractions, the relative ratio being 15:35:50. The qualitative protein composition (by SDS-PAGE) of the fractions varies markedly as well. The lipid components extracted from the fractions are also distributed in different proportions,viz. 40:40:20. The spectrum of fatty acids (FA), detected in lipids of F fraction and analyzed by GC-MS exhibits the same profile as that found in CM; in contrast, fractions CI and CII undergo extensive FA reconstruction. Thermotropic behavior of fractions measured by the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene indicates significant variations of microviscosity (r s) within the F, CI and CII fractions. The protein-to-lipid ratio plays evidently a key role in affecting the physical state of the cytoplasmic membrane. Microdomains of different density coexist in the membrane and exhibit heterogeneity in both chemical composition and “physical state”; the increasedde novo synthesis of FA induced by the cold exclusively in fractions CI and CII indicates correlation with an altered physiological state of bacterial metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CI, CII:

membrane-ribosome fractions (see text)

CM:

crude membranes

DPH:

1,6-diphenyl-1,3,5-hexatriene (alltrans)

DTT:

1,4-dithiothreitol

F:

ribosome-free membrane fraction

FA:

fatty acid(s)

GC-MS:

gas chromatography-mass spectrometry

PMSF:

phenylmethanesulfonyl fluoride

r s :

steady-state fluorescence anisotropy

SDS-PAGE:

sodium dodecylsulfate-polyacrylamide gel electrophoresis

References

  • Amos L.A., van den Ent F., Lowe J.: Structural/functional homology between the bacterial and eukaryotic cytoskeletons.Curr.Opin.Cell Biol.16, 24–31 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Caulfield M.P., Horiuchi S., Tai P.C., Davis B.D.: The 64-kilodalton membrane protein ofBacillus subtilis is also present as a multi-protein complex on membrane-free ribosomes.Proc.Nat.Acad.Sci.USA81, 7772–7776 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Clark E.: Leaky guts and lipid rafts.Trends Microbiol.13, 560–563 (2005).

    Article  CAS  Google Scholar 

  • Corre J., Louarn J.M.: Extent of the activity domain and possible roles of FtsK in theEscherichia coli chromosome terminus.Mol.Microbiol.56, 1539–1548 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Fishov I., Woldringh C.L.: Visualization of membrane domains inEscherichia coli.Mol.Microbiol.32, 1166–1172 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Glass R.L.: Alcoholysis, saponification and the preparation of fatty acid methyl esters.Lipids6, 919–926 (1971).

    Article  CAS  Google Scholar 

  • Heast C.W.M., Verkleij A.J., DeGier J., Scheek R.: The effect of lipid phase transitions on the architecture of bacterial membranes.Biochim.Biophys.Acta356, 17–26 (1974).

    Article  Google Scholar 

  • Heřman P., Konopásek I., Plášek J., Svobodová J.: Time-resolved polarized fluorescence studies of the temperature adaptation inBacillus subtilis using DPH and TMA-DPH fluorescence probes.Biochim.Biophys.Acta1190, 1–8 (1994).

    Article  PubMed  Google Scholar 

  • Kaneda T.: Iso- and anteiso-fatty acids in bacteria: biosynthesis, function and taxonomic significance.Microbiol.Rev.55, 288–302 (1991).

    PubMed  CAS  Google Scholar 

  • Konings W.N., Bisschop A., Veenhuis M., Vermeulen C.A.: New procedure for the isolation of membrane vesicles ofBacillus subtilis and an electron microscopy study of their ultrastructure.J.Bacteriol.116, 1456–1465 (1973).

    PubMed  CAS  Google Scholar 

  • Kruse T., Bork-Jensen J., Gerdes K.: The morphogenetic MreBCD proteins ofEscherichia coli form an essential membrane-bound complex.Mol.Microbiol.55, 78–89 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Lagerholm B.C., Weinreb G.E., Jacobson K., Thompson N.L.: Detecting microdomains in intact cell membranes.Ann.Rev.Phys.Chem.56, 309–336 (2005).

    Article  CAS  Google Scholar 

  • Lakowicz J.R.:Principles of Fluorescence Spectroscopy. Plenum Press, New York-London 1983.

    Google Scholar 

  • Mansilla M.C., de Mendoza D.: TheBacillus subtilis desaturase: model to understand phospholipid modification and temperature sensing.Arch.Microbiol.183, 229–235 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Marty-Mazars D., Horiuchi S., Tai P.C., Davis B.D.: Proteins of ribosome-bearing and free-membrane domains inBacillus subtilis.J.Bacteriol.154, 1381–1388 (1983).

    PubMed  CAS  Google Scholar 

  • O’Farrell P.H.: High resolution two-dimensional electrophoresis of proteins.J.Biol.Chem.250, 4007–4021 (1975).

    PubMed  CAS  Google Scholar 

  • Papahadjopoulos D., Moscarello M., Eylar E.H., Isac T.: Effect of proteins on thermotropic phase transitions of phospholipid membranes.Biochim.Biophys.Acta401, 413–435 (1975).

    Google Scholar 

  • Radin N.S.: Extraction of tissue lipids with a solvent of low toxicity.Meth.Enzymol.72, 5–7 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Simons K., Ikonen E.: Functional rafts in cell membranes.Nature387, 569–572 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Singer S.J., Nicolson G.L.: The fluid model of the structure of cell membranes.Science175, 720–731 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Smart E.J., Ying Y., Donzell W.C., Anderson R.G.: A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane.J.Biol.Chem.271, 29427–29435 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C.: Measurement using bicinchoninic acid; elimination of interfering substances.Analyt.Biochem.180, 136–139 (1985).

    Google Scholar 

  • Steim J.M., Tourtellotte M.E., Reinert J.C., McElhaney R.N., Rader J-C.: Calorimetric evidence for the liquid-crystalline state of lipids in a biomembrane.Proc.Nat.Acad.Sci.USA63, 104–109 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Suutari M., Laakso S.: Unsaturated and branched chain-fatty acids in temperature adaptation ofBacillus subtilis andBacillus megaterium.Biochim.Biophys.Acta1126, 119–124 (1992).

    PubMed  CAS  Google Scholar 

  • Svobodová J., Julák J., Pilař J., Svoboda P.: Membrane fluidity inBacillus subtilis. Validity of homeoviscous adaptation.Folia Microbiol.33, 170–177 (1988).

    Article  Google Scholar 

  • Tanfani F., Curatola G., Bertoli E.: Steady-state fluorescence anisotropy and multifrequency phase fluorometry on oxidized phosphatidylcholine vesicles.Chem.Phys.Lipids50, 1–9 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Vanounou S., Parola A. H., Fishov I.: Phosphatidylethanolamine and phosphatidylglycerol are segregated into different domains in bacterial membrane. A study with pyrene-labeled phospholipids.Mol.Microbiol.49, 1067–1079 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Zajchowski L.D., Robbins S.M.: Lipid rafts and little caves. Compartmentalized signaling in membrane microdomains.Eur.J.Biochem.269, 737–752 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Svobodová.

Additional information

This study was supported by studentship to the first author within theJoint Supervision of Theses by theGovernment of France and theMinistry of Education, Youth and Sports of the Czech Republic, and by grant of theGrant Agency of Charles University in Prague (no. 156/2006).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toman, O., Le Hégarat, F. & Svobodová, J. Detection of lateral heterogeneity in the cytoplasmic membrane ofBacillus subtilis . Folia Microbiol 52, 339–345 (2007). https://doi.org/10.1007/BF02932088

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932088

Keywords

Navigation