Skip to main content
Log in

Description of cellobiohydrolases Ce16A and Ce17A fromTrichoderma reesei using Langmuir-type models

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The binding of cellobiohydrolases to cellulose is a crucial initial step in cellulose hydrolysis. In the search for a detailed understanding of the function of cellobiohydrolases, much information concerning how the enzymes and their constituent catalytic and cellulose-binding changes during hydrolysis is still needed. The adsorption of purffied two cellobiohydrolases (Ce17A and Ce16A) fromTrichoderma reesei cellulase to microcrystalline cellulose has been studied. Cellobiohydrolase II (Ce16A) does not affect the adsorption of cellobiohydrolase I (Ce17A) significantly, and there are specific binding sites for both Ce17A and Ce16A. The adsorption affinity and tightness of the cellulase binding domain (CBD) for Ce17A are larger that those of the CBD for Ce16A. The CBD for Ce17A binds more rapidly and tightly to Avicel than the CBD for Ce16A. The decrease in adsorption observed when the two cellobihydrolases are studied together would appear to be the result of competition for binding sites on the cellulose. Ce17A competes more efficiently for binding sites than Ce16A. Competition for binding sites is the dominating factor when the two enzymes are acting together, furthermore adsorption to sites specific for Ce17A and Ce16A, also contributes to the total adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Teeri, T. T. (1997) Crystalline cellulose degradation: New insights into the function of cellobiohydrolases.Trends Biotechnol. 15: 160–167.

    Article  Google Scholar 

  2. Barr, B. K., Y. L. Hsieh, B. Ganem, and D. B. Wilson (1996) Identification of two functionally different classes of exocellulases.Biochemistry 35: 586–592.

    Article  CAS  Google Scholar 

  3. Henrissat, S., T. T. Teeri, and R. A. Warren (1998) Scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants.FEBS Lett. 425: 352–354.

    Article  CAS  Google Scholar 

  4. Woodward, J. (1991) Synorgism in cellulase systems.Bioresoures Technol. 36: 67–75.

    Article  CAS  Google Scholar 

  5. Fagerstam, L. C. and L. G. Pettersson (1980) The 1.4-β-glucan cellobiohydrolase ofTrichoderma reesi QM 9414. A new type of cellulolytic synergism.FEBS Lett. 119: 97–100.

    Article  Google Scholar 

  6. Tomine, P., H. van Tilbeurgh, G. Pettersson, J. van Damme, J. Vandekerckhove, J. Knowles, T. Teeri, and M. Claeyssens (1988) Studies of the cellulolytic system ofTrichodernia reesei QM 9414: Analysis of domain function in two cellobiotydrolases by limited proteolysis.Eur. J. Biochem. 170: 575–581.

    Article  Google Scholar 

  7. Knowles, J., P. Lehtovaara, and T. Teeri (1987) Cellulase families and their genes.Trends Biotechnol. 5: 255–261.

    Article  CAS  Google Scholar 

  8. Ong, E., J. M. Greenwood, N. R. Gilkes, D. C. Kilburn, R. C. Miller Jr, and R. A. J. Warren (1989) The cellulasebinding domains of cellulases: Tools for biotechnology.Trends Biotechnol. 7: 234–243.

    Article  Google Scholar 

  9. Johansson, G., J. Sthlberg, G. Lindeberg, A. EngstrÖm, and G. Pettersson (1989) Isdlated fungal cellulase terminal domains and synthetic minimum analogue bind to cellulose.FEBS Lett. 243: 389–393.

    Article  CAS  Google Scholar 

  10. Kim, D. W., Y. H. Jang, and Y. K. Jeong (1997) Adsorption behaviors of two cellobiohydrolases and their core proteins fromTrichoderma reesei on Avicel PH 101.Biotechnol. Lett. 19: 893–897.

    Article  CAS  Google Scholar 

  11. Kotiranta, P., J. Karlsson, M. Siika-Aho, J. Medve, L. Viikari, M. Tjerneld, and M. Tenkanen (1999) Adsorption and activity ofTrichoderma reesei cellobiohydrolase I, endoglucanase II, and the corresponding core proteins on steam pretreated willow.Appl. Biochem. Biotechnol. 81: 81–90.

    Article  CAS  Google Scholar 

  12. Kraulis, P., M. Clore, M. Nilges, A. Jones, G. Pettersson, J. Knowles, and G. Gronenboru (1989) Determination of the three-dimensional Solution structure of the Cterminal domain of celloboohydrolase I fromTrichoderma reese.Biochemistry 28: 7241–7257.

    Article  CAS  Google Scholar 

  13. Wood, T. M. and S. I. McCrae (1986) The cellulase ofPenicilliani pittophilium.Biochem. J. 234: 93–99.

    CAS  Google Scholar 

  14. Stuart, J. Y. and D. L. Ristroph (1985) Analysis of cellulose-cellulase adsorption data: A fundamental approach.Biotechnol. Bioeng. 27: 1056–1059.

    Article  CAS  Google Scholar 

  15. Peitersen, N., J. Medeiros, and M. Mandels (1997) Adsorption ofTrichoderma cellulase on cellulose.Biotedinol. Bioeng. 19: 1091–1094.

    Article  Google Scholar 

  16. Bhikhabhai, R., G. Iohansson, and G. Pettersson (1984) Isolation of cellulolytic enzymes fromTrichoderma reesei QM 9414.J. Appl. Biochem. 6: 336–345.

    CAS  Google Scholar 

  17. Summer, J. B., G. F. Somer (1944)Laboratory Experiments in Biological Chemistry. pp. 34–37. Academic Press, NY, USA.

    Google Scholar 

  18. Ellouz, S., H. Durand, and G. Tiraby (1987) Analytical separation ofTrichoderma reesei: cellulase by ion exchange fast protein liquid chromatography.J. Chromatogr. 396: 307–317.

    Article  CAS  Google Scholar 

  19. Belldman, G., A, G. J. Voragen, F. M. Rombouts, M. F. Scarle-van Leeuwen, and W. Pilnik (1987) Adsorption and kinetic behavior of purified endoglucanase and exoglucanases fromTrichoderma viride.Biotechnol. Bioeng. 30: 251–257.

    Article  Google Scholar 

  20. Stahlberg, J., G. Johansson, and G. Pattersson (1991) A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolaseBio/Technology 9: 286–290.

    Article  Google Scholar 

  21. Reese, E. T. (1982) Elution of cellulase from cellulose.Process Biochem. 17: 2–8.

    CAS  Google Scholar 

  22. Woodward, J., M. K. Hayes, and N. E. Lee (1988) Hydrolysis of cellulose by saturation and non-saturating concentrations of cellulose: Implications for synergism.Bio/Technology 6: 301–304.

    Article  CAS  Google Scholar 

  23. Kyriacou, A., R. J. Neufeld, and C. R. MacKenzie (1988) Effect of physical parameters on the adsorption characteristics of fractionatedTrichoderma reesei cellulase components.Enzyme Microb. Technol. 10: 675–681.

    Article  CAS  Google Scholar 

  24. Chanzy, H., B. Henrissat, and R. Vuong (1984) Colloidal gold labeiing of 1,4-beta-D-glucan cellobiohydrolase adsorbed on cellulose substrates.FEBS Lett. 172: 193–197.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Won Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D.W., Hong, Y.G. Description of cellobiohydrolases Ce16A and Ce17A fromTrichoderma reesei using Langmuir-type models. Biotechnol. Bioprocess Eng. 6, 89–94 (2001). https://doi.org/10.1007/BF02931952

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931952

Keywords

Navigation