Skip to main content
Log in

Protein adsorption on Ion exchange resin: Estimation of equilibrium isotherm parameters from batch kinetic data

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The simple Langmuir isotherm is frequently employed to describe the equilibrium behavior of protein adsorption on a wide variety of adsorbents. The two adjustable parameters of the Langmuir isotherm—the saturation capacity, orq m, and the dissociation constant,K d—are usually estimated by fitting the isotherm equation to the equilibrium data acquired from batch equilibration experiments. In this study, we have evaluated the possibility of estimatingq m andK d for the adsorption of bovine serum albumin to a cation exchanger using batch kinetic data. A rate model predicated on the kinetic form of the Langmuir isotherm, with three adjustable parameters (q m,K d, and a rate constant), was fitted to a single kinetic profile. The value ofq m determined as the result of this approach was quantitatively consistent with theq m value derived from the traditional batch equilibrium data. However, theK d value could not be retrieved from the kinetic profile, as the model fit proved insensitive to this parameter. Sensitivity analysis provided significant insight into the identifiability of the three model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

parameter defined in Eq. 6(a), μmol/L

A :

adsorption site on adsorbent surface

b :

parameter defined in Eq. 6(b), μmol/L

c :

protein concentration in the solution phase at timet, μmol/L

c e :

protein concentration of solution phase at equilibrium, μmol/L

c i :

initial protein concentration of solution phase, μmol/L

k 1 :

forward rate constant, L/μmol·s

k 2 :

backward rate constant, 1/s

K d :

Langmuir dissociation constant, μmol/L

P :

protein molecule in the solution phase

PA :

protein-adsorbent complex

q :

protein concentration in the adsorbent phase at timet, μmol/L

q e :

protein concentration in the adsorbent phase at equilibrium, μmol/L

q m :

saturation capacity of the adsorbent, μmol/L

SSE :

sum of squares of error

t :

time, s

v :

settled volume of adsorbent, L

V :

volume of protein solution, L

References

  1. Lyddiatt, A. (2002) Process chromatography: current constraints and future options for the adsorptive recovery of bioproducts.Curr. Opin. Biotechnol. 13: 95–103.

    Article  CAS  Google Scholar 

  2. Chang, C. and A. M. Lenhoff (1998) Comparison of protein adsorption isotherms and uptake rates in preparative cation-exchange materials.J. Chromatogr. A 827: 281–293.

    Article  CAS  Google Scholar 

  3. DePhillips, P. and A. M. Lenhoff (2001) Determinants of protein retention characteristics on cation-exchange adsorbents.J. Chromatogr. A 933: 57–72.

    Article  CAS  Google Scholar 

  4. Staby, A., I. H. Jensen, and I. Mollerup (2000) Comparison of chromatographic ion-exchange resins. I. Strong anion exchange resins.J. Chromatogr. A 897: 99–111.

    Article  CAS  Google Scholar 

  5. Staby, A. and I. H. Jensen (2001) Comparison of chromatographic ion-exchange resins. II. More strong anion exchange resins.J. Chromatogr. A 908: 149–161.

    Article  CAS  Google Scholar 

  6. Staby, A., M.-B. Sand, R. G. Hansen, J. H. Jacobsen, L. A. Andersen, M. Gerstenberg, U. K. Bruus, and I. H. Jensen (2004) Comparison of chromatographic ion-exchange resins. III. Strong cation-exchange resins.J. Chromatogr. A 1034: 85–97.

    Article  CAS  Google Scholar 

  7. Staby, A., M.-B. Sand, R. G. Hansen, J. H. Jacobsen, L. A. Andersen, M. Gerstenberg, U. K. Bruus, and I. H. Jensen (2005) Comparison of chromatographic ion-exchange resins. IV. Strong and weak cation-exchange resins and heparin resins.J. Chromatogr. A 1069: 65–77.

    Article  CAS  Google Scholar 

  8. Habbaba, M. M. and K. O. Ulgen (1997) Analysis of protein adsorption to ion exchangers in a finite bath.J. Chem. Technol. Biotechnol. 69: 405–414.

    Article  CAS  Google Scholar 

  9. Wright, P. R., F. J. Muzzio, and B. J. Glasser (1998) Batch uptake of lysozyme: effect of solution viscosity and mass transfer on adsorption.Biotechnol. Prog. 14: 913–921.

    Article  CAS  Google Scholar 

  10. Conder, J. R. and B. O. Hayek (2000) Adsorption kinetics and equilibria of bovine serum albumin on rigid ion-exchange and hydrophobic interaction chromatography matrices in a stirred cell.Biochem. Eng. J. 6: 215–223.

    Article  CAS  Google Scholar 

  11. Zhou, X., B. Xue, S. Bai, and Y. Sun (2002) Macroporous polymeric ion-exchanger of high capacity for protein adsorption.Biochem. Eng. J. 11: 13–17.

    Article  Google Scholar 

  12. Yao, S. J., Y. X. Guan, and L. H. Yu (2003) Adsorption performance of proteins to CM Sepharose FF and DEAE Sepharose FF adsorbents.Kor. J. Chem. Eng. 20: 93–98.

    Article  CAS  Google Scholar 

  13. Bosma, J. C. and J. A. Wesselingh (2004) Available area isotherm.AIChE J. 50: 848–853.

    Article  CAS  Google Scholar 

  14. Shen, H. and D. D. Frey (2005) Effect of charge regulation on steric mass-action equilibrium for the ion-exchange adsorption of proteins.J. Chromatogr. A 1079: 92–104.

    Article  CAS  Google Scholar 

  15. Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass, mica, and platinum.J. Am. Chem. Soc. 40: 1361–1403.

    Article  CAS  Google Scholar 

  16. de Vasconcellos, J. F. V., A. J. Silva Neto, C. C. Santana, and F. J. C. P. Soeiro (2002) Parameter estimation in solid-liquid adsorption with a stochastic global optimization method.Proceedings of the 4th International Conference on Inverse Problems in Engineering. May 26–31. Rio de Janeiro, Brazil.

  17. Horstmann, B. J., C. N. Kenney, and H. A. Chase (1986) Adsorption of proteins on Sepharose affinity adsorbents of varying particle size.J. Chromatogr. 361: 179–190.

    Article  CAS  Google Scholar 

  18. Lesins, V. and E. Ruckenstein (1988) Patch controlled attractive electrostatic interactions between similarly charged proteins and adsorbents.Colloid Polym. Sci. 266: 1187–1190.

    Article  CAS  Google Scholar 

  19. Beck, J. V. and K. J. Arnold (1977)Parameter Estimation in Engineering and Science. Wiley, New York, USA.

    Google Scholar 

  20. Smith, W. R. and R. W. Missen (2003) Sensitivity analysis in ChE education: Part 1. Introduction and application to explicit models.Chem. Eng. Educ. 37: 222–227.

    Google Scholar 

  21. Whitley, R. D., J. M. Brown, N. P. Karajgikar, and N.-H. L. Wang (1989) Determination of ion exchange equilibrium parameters of amino acid and protein systems by an impulse response technique.J. Chromatogr. 483: 263–287.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, K.H., Hashim, M.A. Protein adsorption on Ion exchange resin: Estimation of equilibrium isotherm parameters from batch kinetic data. Biotechnol. Bioprocess Eng. 11, 61–66 (2006). https://doi.org/10.1007/BF02931870

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931870

Keywords

Navigation